Skip to main content
Log in

Kulakov Algebraic Systems on Groups

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

We define a Kulakov algebraic system as a three-sorted algebraic system satisfying the axioms of a physical structure. We prove a strong version of Ionin’s Theorem on the equivalence of the rank \( (2,2) \) physical structure to the structure of an abstract group. We consider nongroup Kulakov algebraic systems and characterize Kulakov algebraic systems over arbitrary groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Along with the term a physical structure the term a phenomenological symmetric geometry of two sets is used, or briefly a geometry of two sets.

  2. Sometimes it is called multibase or heterogeneous.

References

  1. Kulakov Yu. I., Elements of the Theory of Physical Structures, Universe Contract Company, Moscow (2004) [Russian].

    Google Scholar 

  2. Kulakov Yu. I., “A mathematical formulation of the theory of physical structures,” Sib. Math. J., vol. 12, no. 5, 822–824 (1972).

    Article  MathSciNet  Google Scholar 

  3. Mikhailichenko G. G., “Solution of functional equations in the theory of physical structures,” Dokl. Akad. Nauk SSSR, vol. 206, no. 5, 1056–1058 (1972).

    MathSciNet  Google Scholar 

  4. Bardakov V. G. and Simonov A. A., “Rings and groups of matrices with a nonstandard product,” Sib. Math. J., vol. 54, no. 3, 393–405 (2013).

    Article  MathSciNet  Google Scholar 

  5. Kyrov V. A. and Bogdanova R. A., “The groups of motions of some three-dimensional maximal mobility geometries,” Sib. Math. J., vol. 59, no. 2, 323–331 (2018).

    Article  MathSciNet  Google Scholar 

  6. Helmholtz H., “On the facts underlying geometry,” in: On Foundations of Geometry, GITTL, Moscow (1956), 366–388.

  7. Mikhailichenko G. G., “Two-dimensional geometries,” Dokl. Akad. Nauk SSSR, vol. 260, no. 4, 803–805 (1981).

    MathSciNet  MATH  Google Scholar 

  8. Lev V. Kh., “Three-dimensional geometries in the theory of physical structures,” Methodological and Technological Problems of Information-Logical Systems: Computational Systems, vol. 125, 90–104 (1988) [Russian].

    MathSciNet  MATH  Google Scholar 

  9. Kyrov V. A., “An analytic embedding of some two-dimensional geometries of maximal mobility,” Sib. Electr. Math. Reports, vol. 16, 916–937 (2019).

    MathSciNet  MATH  Google Scholar 

  10. Vityaev E. E., “Numerical, algebraic, and constructive representation of one physical structure,” Logical Foundations MOZ (Methods for Discovery of Regularities), Computer Systems (Vychisl. Sistemy) [Russian], vol. 107, 40–51 (1985).

    MathSciNet  MATH  Google Scholar 

  11. Ionin V. K., “Abstract groups as physical structures,” Systemology and Methodological Problems of Information-Logical Systems (Vychisl. Sistemy) [Russian], no. 135, 40–43 (1990).

    MathSciNet  MATH  Google Scholar 

  12. Simonov A. A., “Pseudomatrix groups and physical structures,” Sib. Math. J., vol. 56, no. 1, 177–190 (2015).

    Article  MathSciNet  Google Scholar 

  13. Simonov A. A., “On generalized sharply \( n \)-transitive groups,” Izv. Math., vol. 78, no. 6, 1207–1231 (2014).

    Article  MathSciNet  Google Scholar 

  14. Plotkin B. I., Universal Algebra, Algebraic Logic, and Databases, Kluwer, Dordrecht (1994).

    Book  Google Scholar 

  15. Malcev A. I., Algebraic Systems, Springer and Akademie, Berlin, Heidelberg, and New York (1973).

    Book  Google Scholar 

  16. Kurosh A. G., Lectures in General Algebra, Elsevier, Amsterdam (2014).

    Google Scholar 

  17. Kulakov Yu. I., “On a principle lying at the foundation of classical physics,” Dokl. Akad. Nauk SSSR, vol. 193, no. 1, 72–75 (1970).

    MathSciNet  Google Scholar 

  18. Simonov A. A., Kulakov Y. I., and Vityaev E. E., “On an algebraic definition of laws,” J. Math. Psychol., vol. 58, 13–20 (2014).

    Article  MathSciNet  Google Scholar 

  19. Serovaiskii S. Ya., “Mathematical basis of physical structures theory,” Intern. J. Math. Phys., vol. 4, no. 1, 10–28 (2013).

    Google Scholar 

  20. Magnus W., Karrass A., and Solitar D., Combinatorial Group Theory, Dover, Mineola (2004).

    MATH  Google Scholar 

Download references

Funding

The work was carried out in the framework of the State Task to the Sobolev Institute of Mathematics (Project 0314–2019–0011).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Neshchadim.

Additional information

Translated from Sibirskii Matematicheskii Zhurnal, 2021, Vol. 62, No. 6, pp. 1357–1368. https://doi.org/10.33048/smzh.2021.62.611

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neshchadim, M.V., Simonov, A.A. Kulakov Algebraic Systems on Groups. Sib Math J 62, 1100–1109 (2021). https://doi.org/10.1134/S0037446621060112

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0037446621060112

Keywords

UDC

Navigation