Skip to main content
Log in

Intrinsic Geometry and Boundary Structure of Plane Domains

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

Given a nonempty compact set \( E \) in a proper subdomain \( \Omega \) of the complex plane, we denote the diameter of \( E \) and the distance from \( E \) to the boundary of \( \Omega \) by \( d(E) \) and \( d(E,\partial\Omega) \), respectively. The quantity \( d(E)/d(E,\partial\Omega) \) is invariant under similarities and plays an important role in geometric function theory. In case \( \Omega \) has the hyperbolic distance \( h_{\Omega}(z,w) \), we consider the infimum \( \kappa(\Omega) \) of the quantity \( h_{\Omega}(E)/\log(1+d(E)/d(E,\partial\Omega)) \) over compact subsets \( E \) of \( \Omega \) with at least two points, where \( h_{\Omega}(E) \) stands for the hyperbolic diameter of \( E \). Let the upper half-plane be \( 𝔿 \). We show that \( \kappa(\Omega) \) is positive if and only if the boundary of \( \Omega \) is uniformly perfect and \( \kappa(\Omega)\leq\kappa(𝔿) \) for all \( \Omega \), with equality holding precisely when \( \Omega \) is convex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Beardon A. F. and Minda D., “The hyperbolic metric and geometric function theory,” in: Proc. Int. Workshop Quasiconformal Mappings and their Applications (IWQCMA05) (S. Ponnusamy, T. Sugawa and Vuorinen M., eds.) (2006), 9–56.

  2. Keen L. and Lakic N., Hyperbolic Geometry from a Local Viewpoint, Cambridge Univ., Cambridge (2007) (Lond. Math. Soc. Stud. Texts; Vol. 68).

    Book  Google Scholar 

  3. Beardon A. F. and Pommerenke Ch., “The Poincaré metric of plane domains,” J. Lond. Math. Soc. (2), vol. 18, 475–483 (1978).

    Article  Google Scholar 

  4. Gehring F. W. and Hag K., The Ubiquitous Quasidisk, Amer. Math. Soc., Providence (2012) (Math. Surv. Monogr.; Vol. 184).

    Book  Google Scholar 

  5. Gehring F. W., Palka B. P., “Quasiconformally homogeneous domains,” J. Anal. Math., vol. 30, 172–199 (1976).

    Article  MathSciNet  Google Scholar 

  6. Sugawa T. and Vuorinen M., “Some inequalities for the Poincaré metric of plane domains,” Math. Z., vol. 250, no. 4, 885–906 (2005).

    Article  MathSciNet  Google Scholar 

  7. Harmelin R. and Minda D., “Quasi-invariant domain constants,” Israel J. Math., vol. 77, 115–127 (1992).

    Article  MathSciNet  Google Scholar 

  8. Mejía D. and Minda D., “Hyperbolic geometry in \( k \)-convex regions,” Pacific J. Math., vol. 141, 333–354 (1990).

    Article  MathSciNet  Google Scholar 

  9. Avkhadiev F. G. and Wirths K.-J., Schwarz–Pick Type Inequalities. Frontiers in Mathematics, Birkhäuser, Basel (2009).

    Book  Google Scholar 

  10. Garnett J. B. and Marshall D. E., Harmonic Measure, Cambridge Univ., Cambridge (2005).

    Book  Google Scholar 

  11. Pommerenke Ch., “Uniformly perfect sets and the Poincaré metric,” Arch. Math., vol. 32, 192–199 (1979).

    Article  MathSciNet  Google Scholar 

  12. Pommerenke Ch., “On uniformly perfect sets and Fuchsian groups,” Analysis, vol. 4, 299–321 (1984).

    Article  MathSciNet  Google Scholar 

  13. Sugawa T., “Various domain constants related to uniform perfectness,” Complex Variables Theory Appl., vol. 36, 311–345 (1998).

    Article  MathSciNet  Google Scholar 

  14. Sugawa T., “Uniformly perfect sets: analytic and geometric aspects (Japanese),” Sugaku Expo., vol. 16, 225–242 (2003).

    Google Scholar 

  15. Bridgeman M. and Canary R. D., “Uniformly perfect domains and convex hulls: improved bounds in a generalization of a theorem of Sullivan,” Pure Appl. Math. Q., vol. 9, no. 1, 49–71 (2013).

    MathSciNet  MATH  Google Scholar 

  16. Stankewitz R., Sugawa T., and Sumi H., “Hereditarily non uniformly perfect sets,” Discrete Contin. Dyn. Syst., vol. 12, no. 8, 2391–2402 (2019).

    MathSciNet  MATH  Google Scholar 

  17. Wang X. and Zhou Q., “Quasimöbius maps, weakly quasimöbius maps and uniform perfectness in quasi-metric spaces,” Ann. Acad. Sci. Fenn. Math., vol. 42, no. 1, 257–284 (2017).

    Article  MathSciNet  Google Scholar 

  18. Hariri P., Klén R., and Vuorinen M., Conformally Invariant Metrics and Quasiconformal Mappings. Springer Monogr. Math., Springer, Berlin (2020).

    Book  Google Scholar 

  19. Gehring F. W. and Osgood B. G., “Uniform domains and the quasi-hyperbolic metric,” J. Anal. Math., vol. 36, 50–74 (1979).

    Article  Google Scholar 

  20. Golberg A., Sugawa T., and Vuorinen M., “Teichmüller’s theorem in higher dimensions and its applications,” Comput. Methods Funct. Theory, vol. 20, no. 3, 539–558 (2020).

    Article  MathSciNet  Google Scholar 

  21. Keogh F. R., “A characterization of convex domains in the plane,” Bull. Lond. Math. Soc., vol. 8, 183–185 (1976).

    Article  Google Scholar 

  22. Beardon A. F., The Geometry of Discrete Groups. Grad. Texts Math.; Vol. 91, Springer, New York (1983).

    Book  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the referee for detailed and constructive corrections.

Funding

The authors were supported in part by the JSPS KAKENHI (Grant JP17H02847).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Rainio.

Additional information

Translated from Sibirskii Matematicheskii Zhurnal, 2021, Vol. 62, No. 4, pp. 845–863. https://doi.org/10.33048/smzh.2021.62.412

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rainio, O., Sugawa, T. & Vuorinen, M. Intrinsic Geometry and Boundary Structure of Plane Domains. Sib Math J 62, 691–706 (2021). https://doi.org/10.1134/S0037446621040121

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0037446621040121

Keywords

UDC

Navigation