Skip to main content
Log in

The variational stability of an optimal control problem for Volterra-type equations

  • Published:
Siberian Mathematical Journal Aims and scope Submit manuscript

Abstract

We study the variational stability of an optimal control problem for a Volterra-type nonlinear functional-operator equation. This means that for this optimal control problem (P ɛ ) with a parameter ɛ we study how its minimum value min(P ɛ ) and its set of minimizers argmin(P ɛ ) depend on ɛ. We illustrate the use of the variational stability theorem with a series of particular problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dal Maso G., An Introduction to Γ-Convergence, Birkhäuser, Boston (1993).

    Book  Google Scholar 

  2. Sumin V. I., Functional Volterra Equations in the Optimal Control Theory for Distributed Systems. Vol. 1, Nizhnegorod. Univ., Nizhniĭ Novgorod (1992).

    Google Scholar 

  3. Chernov A. V., “A majorant criterion for the total preservation of global solvability of controlled functional operator equation,” Russian Math. (Iz. VUZ), 55,No. 3, 85–95 (2011).

    Article  MATH  MathSciNet  Google Scholar 

  4. Buttazzo G. and Dal Maso G., “Γ-Convergence and optimal control problems,” J. Optim. Theory Appl., 38, 385–407 (1982).

    Article  MATH  MathSciNet  Google Scholar 

  5. Denkowski Z. and Migorski S., “Control problems for parabolic and hyperbolic equation via the theory of G- and Γ-convergence,” Ann. Math. Pura Appl. Ser. 4, 149, 23–39 (1987).

    Article  MathSciNet  Google Scholar 

  6. Migorski S., “On asymptotic limits of control problems with parabolic and hyperbolic equations,” Rivista Mat. Pura Appl., 12, 33–50 (1993).

    MATH  MathSciNet  Google Scholar 

  7. Migorski S., “Convergence of optimal solutions in control problems for hyperbolic equations,” Ann. Pol. Math., 62,No. 2, 111–121 (1995).

    MATH  MathSciNet  Google Scholar 

  8. Kuratowski K., Topology. Vol. 1 [Russian translation], Mir, Moscow (1966).

    Google Scholar 

  9. Idczak D., Majewski M., and Walczak S., “Stability analysis of solutions to an optimal control problem associated with a Goursat-Darboux problem,” Int. J. Appl. Math. Comput. Sci., 13,No. 1, 29–44 (2003).

    MATH  MathSciNet  Google Scholar 

  10. Majewski M., “Stability analysis of an optimal control problem for a hyperbolic equation,” J. Optim. Theory Appl., 141, 127–146 (2009).

    Article  MATH  MathSciNet  Google Scholar 

  11. Tolstonogov A. A., “Variational stability of optimal control problems involving subdifferential operators,” Sb. Math., 202,No. 4, 583–619 (2011).

    Article  MATH  MathSciNet  Google Scholar 

  12. Daletskiĭ Yu. L. and Kreĭn M. G., Stability of Solutions to Differential Equations in Banach Space, Amer. Math. Soc., Providence, RI (1974).

    Google Scholar 

  13. Balder E., “Necessary and sufficient conditions for L 1-strong-weak lower semicontinuity of integral functionals,” Nonlinear Anal. Theory, Methods, Appl., 11,No. 12, 1399–1404 (1987).

    Article  MATH  MathSciNet  Google Scholar 

  14. Ekeland I. and Temam R., Convex Analysis and Variational Problems, North-Holland Publishing Company, Amsterdam and Oxford (1976).

    MATH  Google Scholar 

  15. Bourbaki N., General Topology. Use of Real Numbers in General Topology. Function Spaces. Summary of Results. Dictionary [Russian translation], Nauka, Moscow (1975).

    Google Scholar 

  16. Attouch H., Variational Convergence for Functions and Operators. Applicable Mathematics Series, Pitman (Adv. Publ. Program), Boston (1984).

    Google Scholar 

  17. Evans L. C., Partial Differential Equations, Amer. Math. Soc., Providence, RI (1997).

    MATH  Google Scholar 

  18. Pogodaev N. I., “Solutions to the embedding of the Goursat-Darboux type with mixed boundary and distributed controls,” Sibirsk. Zh. Industr. Mat., 11,No. 1, 96–110 (2008).

    MATH  MathSciNet  Google Scholar 

  19. Bokmel’der E. P., The Maximum Variational Principle in Control Hyperbolic Systems with Phase and Functional Restrictions [in Russian], Diss. Kand. Fiz.-Mat. Nauk, Irkutsk (1987).

    Google Scholar 

  20. Ladyzhenskaya O. A., The Mixed Problem for a Hyperbolic Equation [in Russian], Gostekhizdat, Moscow (1953).

    Google Scholar 

  21. Attouch H., Buttazzo G., and Michaille G., Variational Analysis in Sobolev and BV Spaces, SIAM, Philadelphia (2006).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. I. Pogodaev.

Additional information

Original Russian Text Copyright © 2014 Pogodaev N.I. and Tolstonogov A.A.

The authors were supported by the Russian Foundation for Basic Research (Grant 13-01-00287-a) and the Federal Target Program “Scientific and Scientific-Pedagogical Personnel of Innovative Russia” (Contract No. 8211 of 06.08.2012).

__________

Translated from Sibirskiĭ Matematicheskiĭ Zhurnal, Vol. 55, No. 4, pp. 818–839, July–August, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pogodaev, N.I., Tolstonogov, A.A. The variational stability of an optimal control problem for Volterra-type equations. Sib Math J 55, 667–686 (2014). https://doi.org/10.1134/S0037446614040090

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0037446614040090

Keywords

Navigation