Skip to main content
Log in

Effect of Structure on the Critical Stresses and Strains in Titanium Nickelide-Based Alloys

  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

The effect of the test temperature on the mechanical behavior of a titanium nickelide–based alloy is considered. The behavior of a titanium nickelide–based alloy is shown to be substantially dependent on the level of stresses and strains of the material. The critical stresses are determined by the solid-solution, grain-boundary, strain, and precipitation hardening mechanisms. The maximum critical strain can be achieved by a combination of several hardening mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. A. A. Il’in, M. Yu. Kollerov, I. S. Golovin, and A. A. Shinaev, “Mechanisms of forming during deformation and heating of titanium shape memory alloys,” Metalloved. Term. Obrab. Met., No. 4, 12–16 (1998).

  2. M. Yu. Kollerov, D. E. Gusev, A. V. Burnaev, and A. A. Sharonov, “Effect of the chemical composition and the structure on the thermomechanical behavior of titanium nickelide-based alloys,” Metalloved. Term. Obrab. Met., No. 6 (744), 38–44 (2017).

  3. Shape Memory Materials, Ed. by Otsuka and C. M. Wayman (Cambridge University Press, Cambridge, 1998).

  4. S. A. Shabolovskaya, “Surface, corrosion, and biocompatibility aspects of nitinol as an implant material,” Bio-Med. Mater. Eng., No. 12, 69–109 (2002).

  5. M. Yu. Kollerov, D. E. Gusev, and A. V. Burnaev, “Regularities of forming of titanium nickelide-based alloys during mechanical and thermal actions,” in Challenging Problems of Strength (VGTU, Vitebsk, 2018), Vol. 1, pp. 141–160.

    Google Scholar 

  6. K. Otsuka and X. Ren, “Physical metallurgy of Ti–Ni-based shape memory allous,” Progr. Mater. Sci., No. 5 (50), 511–678 (2005).

  7. K. Ootsuka, K. Simidzu, Yu. Sudzuki, et al., Shape Memory Alloys, Ed. by Kh. Funakubo (Metallurgiya, Moscow, 1990).

    Google Scholar 

  8. V. N. Khachin, V. G. Pushin, and V. V. Kondrat’ev, Titanium Nickelide (Nauka, Moscow, 1992).

    Google Scholar 

  9. M. Kollerov, E. Lukina, D. Gusev, P. Mason, and P. Wagstaff, “Impact of material structure on the fatigue behavior of NiTi leading to a modified Coffin–Manson equation,” Mater. Sci. Eng. A 585, 356–362 (2013).

    Article  CAS  Google Scholar 

  10. J. Frensel, E. P. George, A. Dlouhy, Ch. Somsen, M. F.-X. Wagner, and G. Eggeler, “Influence of Ni on martensitic phase transformations in NiTi shape memory alloys,” Acta Materialia 58 (9), 3444–3458 (2010).

    Article  Google Scholar 

  11. V. A. Lobodyuk and E. I. Estrin, Martrensitic Transformations (Fizmatlit, Moscow, 2009).

    Google Scholar 

  12. M. Yu. Kollerov and A. A. Il’in, “Features of fabricating and applying of bio- and mechanically compatible implants made of titanium nickelide,” Titan, No. 1, 47–54 (2018).

    Google Scholar 

  13. V. E. Gyunter, V. N. Khodorenko, Yu. F. Yasenchuk, et al., Titanium Nickelide, Next-Generation Medicine Material (MITs, Tomsk, 2006).

  14. A. A. Il’in, Mechanism and Kinetics of Phase and Structural Transformations in Titanium Alloys (Nauka, Moscow, 1994).

    Google Scholar 

  15. J. Bernardini, C. Lexcellent, L. Daroczi, and D. L. Beke, “Ni diffusion in near-equiatomic Ni–Ti and Ni–Ti(–Cu) alloys,” Phil. Mag. 83 (3), 329–338 (2003).

    Article  CAS  Google Scholar 

  16. D. Liu, J. Fiebig, M. Peterlechner, S. Trubel, M. Wegner, Y. Du, Z. Jin, G. Wilde, and S. Divinski, “Ti and Ni grain-boundary diffusion in B2 NiTi compound,” Defect Diffus. Forum 363, 137–141 (2015).

  17. M. I. Goldstein, S. V. Grachev, and Yu. G. Veksler, Special Steels: Tutorial (Metallurgiya, Moscow, 1985).

    Google Scholar 

  18. D. E. Gusev, M. Yu. Kollerov, and A. A. Popov, “Effect of volume fraction of Ti2Ni and aging on the structure and properties of titanium nickelide-based alloys,” Metalloved. Term. Obrab. Met., No. 2 (752), 14–21 (2018).

Download references

ACKNOWLEDGMENTS

This work was performed on the equipment of the Resource Collective Use Center “Aerospace Materials and Technologies” of the Moscow Aviation Institute.

Funding

This work was carried out in the framework of state assignment to institutes of higher education no. 11.7449.2017/64.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yu. Kollerov.

Additional information

Translated by Yu. Ryzhkov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kollerov, M.Y., Gusev, D.E., Afonina, M.B. et al. Effect of Structure on the Critical Stresses and Strains in Titanium Nickelide-Based Alloys. Russ. Metall. 2020, 760–766 (2020). https://doi.org/10.1134/S0036029520070095

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029520070095

Keywords:

Navigation