Skip to main content
Log in

Anisotropic Adsorption of Water Molecules on Kaolinite: A Molecular Dynamic Study

  • STRUCTURE OF MATTER AND QUANTUM CHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The diffusion, storage, and seepage of water in clay are closely related to the coupling effect of clay mineral and water molecules. However, the anisotropic adsorption mechanism of kaolinite crystal remains unclear. This study focuses on the microscopic interattraction property of kaolinite and water molecules using molecular dynamics (MD) simulation method. Three nano-scale kaolinite-water models were established to investigate the adsorption behavior of six surfaces with pore water. According to the interaction energy of clay-water, the adsorption of four edge surfaces is significantly greater than that of two basal surfaces. The anisotropic adsorption characteristics mainly stem from different atomic arrangements along different crystal orientations, forming different electrostatic adsorption and hydrogen bonding effects. Then, the adsorption topological structure of six surfaces was deeply characterized. From the density and potential energy distribution of pore water, the surfaces of kaolinite can adsorb one layer of strongly bound water and weakly bound water. Besides, the diffusion coefficient of water molecules decreases with the increase of the micro-specific surface area of kaolinite crystal, which is consistent with the macroscopic experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

REFERENCES

  1. R. Pusch and R. Yong, Microstructure of Smectite Clays and Engineering Performance (CRC, London, 2006). https://doi.org/10.1201/9781482265675

    Book  Google Scholar 

  2. H. Bayesteh and A. Hoseini, Comput. Geotech. 130, 103913 (2021). https://doi.org/10.1016/j.compgeo.2020.103913

    Article  Google Scholar 

  3. X. Kang, Z. Xia, R. Chen, et al., Appl. Clay Sci. 176, 38 (2019). https://doi.org/10.1016/j.clay.2019.04.024

    Article  ADS  CAS  Google Scholar 

  4. G. N. White and L. W. Zelazny, Clays Clay Miner. 36, 141 (1988). https://doi.org/10.1346/CCMN.1988.0360207

    Article  ADS  CAS  Google Scholar 

  5. W. F. Bleam, Rev. Geophys. 31 (1) (1993).

  6. C. Zhang, X. Liu, X. Lu, et al., Geochim. Cosmochim. Acta 248, 161 (2019). https://doi.org/10.1016/j.gca.2019.01.010

    Article  ADS  CAS  Google Scholar 

  7. L. Zhang, Y. Zheng, P. Wei, et al., Appl. Clay Sci. 201, 105961 (2021). https://doi.org/10.1016/j.clay.2020.105961

    Article  CAS  Google Scholar 

  8. M. F. Brigatti, Developm. Clay Sci. 2013, 19 (2013).

    Google Scholar 

  9. J. A. Mbey, F. Thomas, A. Razafitianamaharavo, et al., Appl. Clay Sci. 172, 135 (2019). https://doi.org/10.1016/j.clay.2019.03.005

    Article  CAS  Google Scholar 

  10. H. van Olphen and P. H. Hsu, Soil Sci. 97, 290 (1964).

    Article  Google Scholar 

  11. D. Williams and K. P. Williams, J. Colloid Interface Sci. 65, 79 (1978).

    Article  ADS  CAS  Google Scholar 

  12. B. K. Scroth et al., Clays Clay Miner. (1997).

  13. X. Zhu, Z. Zhu, X. Lei, et al., Appl. Clay Sci. 124–125, 127 (2016).

    Article  Google Scholar 

  14. W. Sun, Y. H. Wang, L. I. Hai-Pu, et al., Trans. Nonferr. Met. Soc. China 13, 968 (2003).

    CAS  Google Scholar 

  15. Y. I. Tarasevich, Ukr. Khim. Zh. 59, 150 (1993).

    CAS  Google Scholar 

  16. R. Šolc, M. H. Gerzabek, H. Lischka, et al., Geoderma 169, 47 (2011). https://doi.org/10.1016/j.geoderma.2011.02.004

    Article  ADS  CAS  Google Scholar 

  17. L. Xiong, L. Xiancai, W. Rucheng, et al., Geochim. Cosmochim. Acta 92, 233 (2012). https://doi.org/10.1016/j.gca.2012.06.008

    Article  CAS  Google Scholar 

  18. C. B. Ian, S. Garrison, and C. M. B. Alain, J. Colloid Interface Sci. 312 (2) (2007). https://doi.org/10.1016/j.jcis.2007.03.062

  19. X. Gu, L. J. Evans, and S. J. Barabash, Geochim. Cosmochim. Acta 74, 5718 (2010).

    Article  ADS  CAS  Google Scholar 

  20. A. Kremleva, S. Krüger, and N. Rösch, Geochim. Cosmochim. Acta 75, 706 (2011). https://doi.org/10.1016/j.gca.2010.10.019

    Article  ADS  CAS  Google Scholar 

  21. B. Carrier, M. Vamme, J. M. Pellenq, et al., J. Phys. Chem. C 118, 8933 (2014).

    Article  CAS  Google Scholar 

  22. Y. Zheng and A. Zaoui, Phys. A (Amsterdam, Neth.) 392, 5994 (2013). https://doi.org/10.1016/j.physa.2013.07.019

  23. Y. Zhang and W. Guo, Fuel 293, 120428 (2021). https://doi.org/10.1016/j.fuel.2021.120428

    Article  CAS  Google Scholar 

  24. Z. Ma, R. Pathegama Gamage, T. Rathnaweera, et al., Appl. Clay Sci. 168, 436 (2019). https://doi.org/10.1016/j.clay.2018.11.018

    Article  CAS  Google Scholar 

  25. X. Li, N. Liu, L. Tang, et al., Appl. Clay Sci. 198, 105814 (2020). https://doi.org/10.1016/j.clay.2020.105814

    Article  CAS  Google Scholar 

  26. K. Tong, J. Guo, S. Chen, et al., Mater. Today Commun. 28, 102675 (2021). https://doi.org/10.1016/j.mtcomm.2021.102675

    Article  CAS  Google Scholar 

  27. R. Chen, X. Liu, W. Yang, et al., Comput. Geotech. 129, 103863 (2021). https://doi.org/10.1016/j.compgeo.2020.103863

    Article  Google Scholar 

  28. H. Sun, W. Yang, R. Chen, et al., Appl. Clay Sci. 206, 106073 (2021). https://doi.org/10.1016/j.clay.2021.106073

    Article  CAS  Google Scholar 

  29. R. B. Neder, M. Burghammer, T. Grasl, et al., Clays Clay Miner. 47, 487 (1999). https://doi.org/10.1346/CCMN.1999.0470411

    Article  ADS  CAS  Google Scholar 

  30. W. L. Jorgensen, J. Chrasekhar, J. D. Madura, et al., J. Chem. Phys. 79, 926 (1983). https://doi.org/10.1063/1.445869

    Article  ADS  CAS  Google Scholar 

  31. R. T. Cygan, J. Liang, and A. G. Kalinichev, J. Phys. Chem. B 108, 1255 (2004). https://doi.org/10.1021/jp0363287

    Article  CAS  Google Scholar 

  32. S. Plimpton, J. Comput. Phys. 117, 1 (1995). https://doi.org/10.1006/jcph.1995.1039

    Article  ADS  CAS  Google Scholar 

  33. F. Bergaya, B. Theng, and G. Lagaly, Handbook of Clay Science (Elsevier, Amsterdam, 2006).

    Google Scholar 

  34. Z. Chen, Y. Zhao, X. Xu, et al., Comput. Mater. Sci. 171, 109256 (2020). https://doi.org/10.1016/j.commatsci.2019.109256

    Article  CAS  Google Scholar 

  35. A. T. Onawole, M. S. Nasser, I. A. Hussein, et al., Appl. Surf. Sci. 546, 149164 (2021). https://doi.org/10.1016/j.apsusc.2021.149164

    Article  CAS  Google Scholar 

  36. J. Wang, W. Ren, and S. Yan, J. Mol. Struct. 1245, 131140 (2021). https://doi.org/10.1016/j.molstruc.2021.131140

    Article  CAS  Google Scholar 

  37. J. Chen, Y. Sun, L. Liu, et al., Appl. Surf. Sci. 600, 154071 (2022). https://doi.org/10.1016/j.apsusc.2022.154071

    Article  CAS  Google Scholar 

  38. B. Min, P. Wang, S. Li, et al., Construct. Build. Mater. 325, 126597 (2022). https://doi.org/10.1016/j.conbuildmat.2022.126597

    Article  CAS  Google Scholar 

  39. J. Chen, F. Min, L. Liu, et al., Appl. Surf. Sci. 476, 6 (2019). https://doi.org/10.1016/j.apsusc.2019.01.081

    Article  ADS  CAS  Google Scholar 

  40. D. M. Zymnis, A. J. Whittle, and T. J. Germaine, Geotech. Test. J. 42, 20170012 (2019).

    Article  Google Scholar 

  41. Y. Li, M. Chen, H. Song, et al., Appl. Clay Sci. 186, 105439 (2020). https://doi.org/10.1016/j.clay.2020.105439

    Article  CAS  Google Scholar 

  42. X. Kang, X. Zou, H. Sun, et al., Appl. Clay Sci. 218, 106414 (2022). https://doi.org/10.1016/j.clay.2022.106414

    Article  CAS  Google Scholar 

  43. N. Malikova, E. Dubois, V. Marry, et al., Zeitschr. Phys. Chem. (2010).

  44. E. S. Boek, P. V. Coveney, and N. T. Skipper, J. Am. Chem. Soc. 117, 12608 (1995).

    Article  CAS  Google Scholar 

  45. J. Chen, F. Min, and L. Liu, Appl. Surf. Sci. 467–468, 12 (2019). https://doi.org/10.1016/j.apsusc.2018.10.130

    Article  ADS  CAS  Google Scholar 

  46. Y. Zheng and A. Zaoui, Solid State Ionics 203, 80 (2011). https://doi.org/10.1016/j.ssi.2011.09.020

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This research is financially supported by National Natural Science Foundation of China (grant no. 52009149), Natural Science Foundation of GuangDong Basic and Applied Basic Research Foundation (grant no. 2021A1515012612).

Funding

This work was supported by ongoing institutional funding. No additional grants to carry out or direct this particular research were obtained.

Author information

Authors and Affiliations

Authors

Contributions

Ming Lu: conceptualization, methodology, investigation, data curation; writing: review and editing, original draft, visualization.

Yuan-Yuan Zheng: conceptualization, writing: review and editing, supervision, project administration.

Corresponding author

Correspondence to Yuan-Yuan Zheng.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, M., Yuan-Yuan Zheng Anisotropic Adsorption of Water Molecules on Kaolinite: A Molecular Dynamic Study. Russ. J. Phys. Chem. 97, 3333–3345 (2023). https://doi.org/10.1134/S0036024424030154

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024424030154

Keywords:

Navigation