Skip to main content
Log in

Thermodynamic Study of Tellurium Polybromide Complexes

  • THERMODYNAMICS AND MATERIALS SCIENCE
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The pressure of saturated and unsaturated Br2 vapors over (cation)2{[TeBr6](Br2)} (cation = Me4N+, Et4N+) solid polybromotellurates is measured via static tensimetry using membrane zero manometers in a wide range of temperatures. Experimental data are used to determine the thermal stability of these compounds (Tdec). A physicochemical model of vaporization is proven, thermodynamic characteristics of the evaporation of bromine that bonds the moieties of polybromotellurate anions (\({{\Delta }_{{{\text{pr}}}}}H_{T}^{^\circ }\), \({{\Delta }_{{{\text{pr}}}}}S_{T}^{^\circ }\), \(\ln p\) = f(T)) are calculated, and the energies of bonding between [TeBr6] octahedra and Br2 (\({{\Delta }_{{\text{b}}}}G_{T}^{^\circ }\)) are determined. Results are compared to others for bismuth polybromide complexes studied earlier.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. J. Pelletier and J. Caventou, Ann. Chim. Phys. 10, 142 (1819).

    Google Scholar 

  2. P. H. Svensson and L. Kloo, Chem. Rev. 103, 1649 (2003). https://doi.org/10.1021/cr0204101

    Article  CAS  PubMed  Google Scholar 

  3. K. Sonnenberg, L. Mann, F. A. Redeker, et al., Angew. Chem. Int. Ed. 59, 5464 (2020). https://doi.org/10.1002/anie.201903197

    Article  CAS  Google Scholar 

  4. G. R. Desiraju, P. Shing Ho, L. Kloo, et al., Pure Appl. Chem. 85, 1711 (2013). https://doi.org/10.1351/PAC-REC-12-05-10

    Article  CAS  Google Scholar 

  5. G. Cavallo, P. Metrangolo, R. Milani, et al., Chem. Rev. 116, 2478 (2016). https://doi.org/10.1021/acs.chemrev.5b00484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. N. A. Korobeynikov, A. N. Usoltsev, P. A. Abramov, et al., Inorganics 11, 25 (2023). https://doi.org/10.3390/inorganics11010025

    Article  CAS  Google Scholar 

  7. H. Keil, K. Sonnenberg, C. Müller, et al., Angew. Chem. Int. Ed. 60, 2569 (2021). https://doi.org/10.1002/anie.202013727

    Article  CAS  Google Scholar 

  8. R. Brückner, H. Haller, S. Steinhauer, et al., Angew. Chem. Int. Ed. 54, 15579 (2015). https://doi.org/10.1002/anie.201507948

    Article  CAS  Google Scholar 

  9. K. Sonnenberg, P. Pröhm, N. Schwarze, et al., Angew. Chem. Int. Ed. 57, 9136 (2018). https://doi.org/10.1002/anie.201803486

    Article  CAS  Google Scholar 

  10. P. Voßnacker, A. Wüst, C. Müller, et al., Angew. Chem. Int. Ed. 61, e202209684 (2022). https://doi.org/10.1002/anie.202209684

  11. N. A. Korobeynikov, A. N. Usoltsev, B. A. Kolesov, et al., CrystEngComm. 24, 3150 (2022). https://doi.org/10.1039/D2CE00210H

    Article  CAS  Google Scholar 

  12. T. A. Shestimerova, N. A. Yelavik, A. V. Mironov, et al., Inorg. Chem. 57, 4077 (2018). https://doi.org/10.1021/acs.inorgchem.8b00265

    Article  CAS  PubMed  Google Scholar 

  13. T. A. Shestimerova, A. V. Mironov, M. A. Bykov, et al., Molecules 25, 2765 (2020). https://doi.org/10.3390/molecules25122765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. A. V. Bykov, T. A. Shestimerova, M. A. Bykov, et al., Int. J. Mol. Sci. 24, 2201 (2023). https://doi.org/10.3390/ijms24032201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. T. A. Shestimerova, M. A. Bykov, A. V. Grigorieva, et al., Mendeleev Commun. 32, 194 (2022). https://doi.org/10.1016/j.mencom.2022.03.014

    Article  CAS  Google Scholar 

  16. T. A. Shestimerova, N. A. Golubev, M. A. Bykov, et al., Molecules 26, 5712 (2021). https://doi.org/10.3390/molecules26185712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. M. Küttinger, P. A. Loichet Torres, E. Meyer, et al., Chem. - A Eur. J. 28, e202103491 (2022). https://doi.org/10.1002/chem.202103491

  18. M. Küttinger, R. Riasse, J. Wlodarczyk, et al., J. Power Sources 520, 230804 (2022). https://doi.org/10.1016/j.jpowsour.2021.230804

  19. W. Wu, J. Luo, F. Wang, et al., ACS Energy Lett. 6, 2891 (2021). https://doi.org/10.1021/acsenergylett.1c01146

    Article  CAS  Google Scholar 

  20. A. N. Usoltsev, S. A. Adonin, A. S. Novikov, et al., CrystEngComm. 19, 5934 (2017). https://doi.org/10.1039/C7CE01487B

    Article  CAS  Google Scholar 

  21. A. N. Usoltsev, S. A. Adonin, P. A. Abramov, et al., Eur. J. Inorg. Chem. 2018, 3264 (2018). https://doi.org/10.1002/ejic.150+273201800383

    Article  CAS  Google Scholar 

  22. L. N. Zelenina, T. P. Chusova, A. V. Isakov, et al., J. Chem. Thermodyn. 141, 105958 (2020). https://doi.org/10.1016/j.jct.2019.105958

  23. A. V. Suvorov, Thermodynamic Chemistry of the Vapor State (Khimiya, Leningrad, 1970), p. 46 [in Russian].

    Google Scholar 

  24. L. N. Zelenina, T. P. Chusova, and I. G. Vasilyeva, J. Chem. Thermodyn. 57, 101 (2013). https://doi.org/10.1016/j.jct.2012.08.005

    Article  CAS  Google Scholar 

  25. L. N. Zelenina, T. P. Chusova, S. A. Sapchenko, and N. V. Gelfond, Russ. J. Inorg. Chem. 68, 140 (2023). https://doi.org/10.31857/S0044457X22601274

    Article  CAS  Google Scholar 

  26. V. A. Titov and G. A. Kokovin, in Mathematical Methods in Chemical Thermodynamics (Nauka, Novosibirsk, 1980), p. 98 [in Russian].

    Google Scholar 

  27. L. V. Gurvich, Vest. Akad. Nauk SSSR, No. 3, 54 (1983).

Download references

Funding

This work was supported by the RF Ministry of Science and Higher Education, project nos. 121031700314-5 and 121031700313-8.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. N. Zelenina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by M. Timoshinina

ADDITIONAL INFORMATION

This article is part of the Materials of the XV Symposium with International Participation “Thermodynamics and Materials Science,” Novosibirsk, July 3–7, 2023.

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zelenina, L.N., Chusova, T.P., Korobeinikov, N.A. et al. Thermodynamic Study of Tellurium Polybromide Complexes. Russ. J. Phys. Chem. (2024). https://doi.org/10.1134/S003602442401031X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1134/S003602442401031X

Keywords:

Navigation