Skip to main content
Log in

Thermal Conductivity of Cesium Bismuthides in the Liquid State

  • CHEMICAL THERMODYNAMICS AND THERMOCHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The thermal conductivity of liquid alloys of the cesium–bismuth system with 20–66 at % Bi in the temperature range from the liquidus line to 1173 K has been studied experimentally with an error of 4–6%. It was found that the thermal conductivity of liquid cesium bismuthides for the indicated compositions and temperatures takes low values from 0.7 to 4.5 W/(m K) typical for liquid salts. The thermal diffusivity and Lorenz number were calculated from the results of thermal conductivity measurements. An analysis of the temperature and concentration dependences of the studied properties indirectly confirms current views on the presence of ordered structures called ionic complexes in alkali metal bismuthide melts, which significantly affect the thermophysical properties of melts and are destroyed at elevated temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. G. V. Samsonov, M. N. Abdusalyamova, and V. B. Chernogorenko, Bismuthides (Naukova Dumka, Kiev, 1977) [in Russian].

    Google Scholar 

  2. O. S. Koroleva and E. V. Chulkov, Sov. Phys. Semicond. 26, 125 (1992).

    Google Scholar 

  3. W. van der Lugt, Phys. Scr. T 1991, 372 (1991). https://doi.org/10.1088/0031-8949/1991/T39/059

    Article  Google Scholar 

  4. A. Petric, A. D. Pelton, and M.-L. Saboungi, J. Electrochem. Soc. 135, 2754 (1988). https://doi.org/10.1149/1.2095424

    Article  CAS  Google Scholar 

  5. J. A. Meijer and W. van der Lugt, J. Phys.: Condens. Matter 1, 9779 (1989). https://doi.org/10.1088/0953-8984/1/48/024

    Article  CAS  Google Scholar 

  6. R. Xu, R. Kinderman, and W. van der Lugt, J. Phys.: Condens. Matter 3, 127 (1991). https://doi.org/10.1088/0953-8984/3/1/010

    Article  CAS  Google Scholar 

  7. G. Steinleitner, W. Freyland, and F. Hensel, Ber. Bunsenges. Phys. Chem. 79, 1186 (1975). https://doi.org/10.1002/bbpc.19750791204

    Article  CAS  Google Scholar 

  8. R. A. Khairulin, R. N. Abdullaev, and S. V. Stankus, Russ. J. Phys. Chem. A 91, 1946 (2017). https://doi.org/10.1134/S0036024417100181

    Article  CAS  Google Scholar 

  9. S. V. Stankus, R. N. Abdullaev, and R. A. Khairulin, High Temp-High Press. 47, 403 (2018).

    Google Scholar 

  10. R. A. Khairulin, S. V. Stankus, and R. N. Abdullaev, J. Eng. Thermophys. 27, 303 (2018). https://doi.org/10.1134/S1810232818030050

    Article  CAS  Google Scholar 

  11. R. A. Khairulin, R. N. Abdullaev, and S. V. Stankus, Phys. Chem. Liq. 58, 143 (2020). https://doi.org/10.1080/00319104.2018.1553042

    Article  CAS  Google Scholar 

  12. A. S. Agazhanov, R. N. Abdullaev, D. A. Samoshkin, and S. V. Stankus, Russ. J. Phys. Chem. A 95, 1291 (2021). https://doi.org/10.1134/S0036024421070037

    Article  CAS  Google Scholar 

  13. A. Sh. Agazhanov, R. N. Abdullaev, D. A. Samoshkin, and S. V. Stankus, Fusion Eng. Des. 152, 1 (2020). https://doi.org/10.1016/j.fusengdes.2020.111456

    Article  CAS  Google Scholar 

  14. S. V. Stankus, I. V. Savchenko, O. S. Yatsuk, and Y. M. Kozlovskii, Thermophys. Aeromech. 25, 639 (2018). https://doi.org/10.1134/S0869864318040170

    Article  Google Scholar 

  15. I. V. Savchenko, S. V. Stankus, and A. Sh. Agazhanov, High Temp. 51, 281 (2013). https://doi.org/10.1134/S0018151X13010148

    Article  CAS  Google Scholar 

  16. A. S. Agazhanov, R. N. Abdullaev, D. A. Samoshkin, and S. V. Stankus, High Temp-High Press. 47, 311 (2018).

    Google Scholar 

  17. X. An, J. Cheng, H. Yin, et al., Int. J. Heat Mass Transf. 90, 872 (2015). https://doi.org/10.1016/j.ijheatmasstransfer.2015.07.042

    Article  CAS  Google Scholar 

  18. A. Sh. Agazhanov, R. N. Abdullaev, D. A. Samoshkin, and S. V. Stankus, Thermophys. Aeromech. 24, 927 (2017). https://doi.org/10.1134/S0869864317060117

    Article  Google Scholar 

  19. K. Hochgesand and R. Winter, J. Chem. Phys. 112, 7551 (2000). https://doi.org/10.1063/1.481328

    Article  CAS  Google Scholar 

  20. S. A. van der Aart, V. W. J. Verhoeven, and P. Verkerk, J. Chem. Phys. 112, 857 (2000). https://doi.org/10.1063/1.480612

    Article  CAS  Google Scholar 

Download references

Funding

This study was carried out under the government contract at Kutateladze Institute of Thermophysics, Siberian Branch of the Russian Academy of Sciences (no. 121031800219-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sh. Agazhanov.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agazhanov, A.S., Abdullaev, R.N., Khairulin, A.R. et al. Thermal Conductivity of Cesium Bismuthides in the Liquid State. Russ. J. Phys. Chem. 97, 2345–2349 (2023). https://doi.org/10.1134/S003602442311002X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003602442311002X

Keywords:

Navigation