Skip to main content
Log in

Theoretical Study of 5,5,6-Trihydroxy-6-methyldihydropyrimidine-2,4-dione Enantiomers

  • CHEMOINFORMATICS AND COMPUTER MODELING
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The thermodynamic stability of the axial (а) and equatorial (е) forms of the S- and R-enantiomers of 5,5,6-trihydroxy-6-methyldihydropyrimidine-2,4(1Н,3Н)-dione was studied by quantum-chemical methods. The equilibrium geometrical parameters and thermodynamic characteristics were determined by the DFT method using the TPSS functional combined with the 6-311+G(d,p) split-valence basis set including the d and p type polarization functions. The Chemcraft and VMD programs were used to visualize the geometrical structure. The most stable forms of 5,5,6-trihydroxy-6-methyldihydropyrimidine-2,4(1Н,3Н)-dione are Se and Re in both the gas phase and aqueous and organic (DMSO) media. The activation barrier of the rearrangement inside the ring is 21.22–24.93 kJ/mol depending on the medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

Notes

  1. The data may be obtained from The Cambridge Crystallographic Data Centre at the address www.ccdc.cam.ac.uk/data_ reguest/cif).

REFERENCES

  1. V. A. Myshkin and A. B. Bakirov, Oxymethyluracil (Essays on Experimental Pharmacology) (DAR, Ufa, 2001) [in Russian].

    Google Scholar 

  2. S. V. Jovanovic and M. G. Simic, J. Am. Chem. Soc. 108, 5968 (1986). https://doi.org/10.1021/ja00279a050

    Article  CAS  PubMed  Google Scholar 

  3. D. K. Hazra and S. Steenken, J. Am. Chem. Soc. 105, 4380 (1983). https://doi.org/10.1021/ja00351a042

    Article  CAS  Google Scholar 

  4. J. A. Theruvathu, C. T. Aravindakumar, R. Flyunt, et al., J. Am. Chem. Soc. 123, 9007 (2001). https://doi.org/10.1021/ja0109794

    Article  CAS  PubMed  Google Scholar 

  5. C. von Sonntag, Int. J. Radiat. Appl. Instrum., Part C 30, 313 (1987). https://doi.org/10.1016/1359-0197(87)90101-9

    Article  CAS  Google Scholar 

  6. M. Al-Sheikhly and C. von Sonntag, Z. Naturforsch. 38b, 1622 (1983). https://doi.org/10.1515/znb-1983-1214

  7. T. Simandan, J. Sun, and T. A. Dix, Biochem. J. 335, 233 (1998). https://doi.org/10.1042/bj3350233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. S. A. Grabovskiy, A. R. Abdrakhmanova, Yu. I. Murinov, and N. N. Kabal’nova, Curr. Org. Chem. 13, 1733 (2009). https://doi.org/10.2174/138527209789578081

    Article  CAS  Google Scholar 

  9. S. A. Grabovskiy, I. G. Konkina, Yu. I. Murinov, and N. N. Kabal’nova, Curr. Org. Chem. 16, 1447 (2012). https://doi.org/10.2174/138527212800672619

    Article  CAS  Google Scholar 

  10. S. P. Ivanov, I. G. Konkina, I. P. Baikova, et al., Chem. Heterocycl. Compd. 11, 1424 (2002). https://doi.org/10.1002/chin.200327138

    Article  Google Scholar 

  11. S. F. Petrova, T. R. Nugumanov, A. N. Lobov, et al., Vestn. Bashkir. Univ. 21 (3), 626 (2016).

    Google Scholar 

  12. S. F. Petrova, S. S. Ostakhov, S. P. Ivanov, T. R. Nugumanov, Yu. I. Murinov, and S. L. Khursan, High Energy Chem. 52, 480 (2018). https://doi.org/10.1134/S0023119318060116

    Article  CAS  Google Scholar 

  13. T. R. Nugumanov, S. P. Ivanov, Z. A. Starikova, and Y. I. Murinov, Mendeleev Commun. 18, 223 (2008). https://doi.org/10.1016/j.mencom.2008.07.020

    Article  CAS  Google Scholar 

  14. S. F. Petrova, M. G. Il’ina, T. R. Nugumanov, et al., Izv. Ufim. Nauch. Tsentra RAN, No. 1, 112 (2020).

  15. S. F. Petrova, T. R. Nugumanov, A. N. Lobov, L. V. Spirikhin, and S. P. Ivanov, J. Appl. Spectrosc. 89, 225 (2022). https://doi.org/10.1007/s10812-022-01347-z

    Article  CAS  Google Scholar 

  16. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, et al., Gaussian 09 (Gaussian Inc., 2010).

    Google Scholar 

  17. G. A. Zhurko, Chemcraft. www.chemcraftprog.com.

  18. J. Tao, J. P. Perdew, V. N. Staroverov, and G. E. Scuseria, Phys. Rev. Lett. 91, 146401 (2003). https://doi.org/10.1103/PhysRevLett.91.146401

  19. K. K. Raghavachari, J. S. Binkley, R. Seeger, and J. A. Pople, J. Chem. Phys. 72, 650 (1980). https://doi.org/10.1063/1.438955

    Article  Google Scholar 

  20. A. D. McLean and G. S. Chandler, J. Chem. Phys. 72, 5639 (1980). https://doi.org/10.1063/1.438980

    Article  CAS  Google Scholar 

  21. J. Tomasi, B. Mennucci, and R. Cammi, Chem. Rev. 105, 2999 (2005). https://doi.org/10.1021/cr9904009

    Article  CAS  PubMed  Google Scholar 

  22. F. Floris and J. Tomasi, J. Comput. Chem. 10, 616 (1989). https://doi.org/10.1002/jcc.540100504

    Article  CAS  Google Scholar 

  23. F. M. Floris, J. Tomasi, and J. L. P. Ahuir, J. Comput. Chem. 12, 784 (1991). https://doi.org/10.1002/jcc.540120703

    Article  CAS  Google Scholar 

  24. R. A. Pierotti, Chem. Rev. 76, 717 (1976). https://doi.org/10.1021/cr60304a002

    Article  CAS  Google Scholar 

  25. K. Ruud, T. Helgaker, K. L. Bak, P. Jørgensen, and H. J. Aa. Jensen, J. Chem. Phys. 99, 3847 (1993). https://doi.org/10.1063/1.466131

    Article  CAS  Google Scholar 

  26. T. I. Lukmanov, G. S. Abdrakhimova, E. M. Khamitov, and S. P. Ivanov, Russ. J. Phys. Chem. A 86, 1104 (2012). https://doi.org/10.1134/S0036024412990010

    Article  CAS  Google Scholar 

  27. V. M. Potapov, Stereochemistry (Khimiya, Moscow, 1988) [in Russian].

    Google Scholar 

  28. H. Günther, NMR Spectroscopy: An Introduction (Wiley, Chichester, 1980).

    Google Scholar 

Download references

Funding

This study was performed under the government contract (no. 123011300044-5) of the Ministry of Science and Higher Education. The calculations were performed on a cluster supercomputer at the “Chemistry” Multiaccess Center, Ufa Institute of Chemistry, Ufa Federal Research Center, Russian Academy of Sciences, and “Agidel” Regional Multiaccess Center, Ufa Federal Research Center, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. F. Petrova.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by L. Smolina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khamitov, E.M., Petrova, S.F., Il’ina, M.G. et al. Theoretical Study of 5,5,6-Trihydroxy-6-methyldihydropyrimidine-2,4-dione Enantiomers. Russ. J. Phys. Chem. 97, 2275–2281 (2023). https://doi.org/10.1134/S003602442310014X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003602442310014X

Keywords:

Navigation