Skip to main content
Log in

GeCn Coordination Polyhedra in the Crystal Structures

  • STRUCTURE OF MATTER AND QUANTUM CHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

A crystal-chemical analysis has been performed for germanium compounds whose structure includes GeCn coordination polyhedra using the intersecting sectors method and Voronoi–Dirichlet polyhedra. In the structures of organogermanium compounds, the germanium atoms have coordination numbers of 2–6 and 10 with respect to the carbon atoms. The influence of the coordination number and oxidation state of germanium atoms on the main characteristics of their Voronoi–Dirichlet polyhedra (VDP) was considered. The existence of a single linear dependence of the solid angles of VDP faces corresponding to valence and nonvalence Ge–C and Ge⋅⋅⋅C contacts on the corresponding internuclear distances was established. A stereo effect of the lone pair of electrons of Ge(II) atoms in the GeCn complexes (n = 2–6 or 10) found; it manifests itself as a displacement of the nuclei of Ge(II) atoms from the centers of gravity of their VDPs (0.15–0.58 Å) and as asymmetry of the coordination sphere. The deviation of the GeC3 complexes from planar geometry in the crystal structures was shown to be directly proportional to the displacement of the nuclei of Ge atoms from the centers of gravity of their VDP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. K. El’shenbroikh, Organometallic Chemistry (BINOM, Labor. Znanii, Moscow, 2011), p. 746 [in Russian].

    Google Scholar 

  2. M. Ludwiczak, M. Bayda, M. Dutkiewicz, et al., Organometallics 35, 2454 (2016). https://doi.org/10.1021/acs.organomet.6b00336

    Article  CAS  Google Scholar 

  3. H. Cao, I. A. Brettell-Adams, F. Qu, et al., Organometallics 36, 2565 (2017). https://doi.org/10.1021/acs.organomet.7b00135

    Article  CAS  Google Scholar 

  4. J. Ohshita, M. Sugino, and Y. Ooyama, et al., Organometallics 38, 1606 (2019). https://doi.org/10.1021/acs.organomet.9b00036

    Article  CAS  Google Scholar 

  5. Cambridge Structural Database System, Version 5.32 (Crystallographic Data Centre, Cambridge, 2022).

  6. M. O. Karasev, I. N. Karaseva, and D. V. Pushkin, Russ. J. Inorg. Chem. 63, 324 (2018). https://doi.org/10.1134/S0036023618030105

    Article  CAS  Google Scholar 

  7. M. O. Karasev, I. N. Karaseva, and D. V. Pushkin, Russ. J. Inorg. Chem. 63, 1032 (2018). https://doi.org/10.1134/S0036023618080107

    Article  CAS  Google Scholar 

  8. M. O. Karasev, I. N. Karaseva, and D. V. Pushkin, Russ. J. Inorg. Chem. 64, 870 (2019). https://doi.org/10.1134/S003602361907009X

    Article  CAS  Google Scholar 

  9. M. O. Karasev, I. N. Karaseva, and D. V. Pushkin, Russ. J. Inorg. Chem. 66, 1669 (2021). https://doi.org/10.1134/S0036023621110115

    Article  CAS  Google Scholar 

  10. V. A. Blatov, A. P. Shevchenko, and V. N. Serezhkin, Russ. J. Coord. Chem. 25, 453 (1999).

    CAS  Google Scholar 

  11. B. K. Vainshtein, V. M. Fridkin, and V. L. Indenmob, Modern Crystallography (Nauka, Moscow, 1979), Vol. 1, p. 161 [in Russian].

    Google Scholar 

  12. O. A. Blatova, V. A. Blatov, and V. N. Serezhkin, Russ. J. Coord. Chem. 26, 847 (2000).

    Article  CAS  Google Scholar 

  13. M. Kira, T. Iwamoto, M. Ichinihe, et al., Chem. Lett. 28, 263 (1999). https://doi.org/10.1246/cl.1999.263

    Article  Google Scholar 

  14. Inorganic Crystal Structure Database (Gmelin-Inst. Anorg. Chem. FI, Karlsruhe, 2022).

  15. Y. Mizuhata, S. Fujimori, T. Sasamori, et al., Angew. Chem. 56, 4588 (2017). https://doi.org/10.1002/anie.201700801

    Article  CAS  Google Scholar 

  16. A. Kawachi, K. Machida, and Y. Yamamoto, Chem. Commun. 46, 1890 (2010). https://doi.org/10.1039/b923606f

    Article  CAS  Google Scholar 

  17. W. P. Freeman, T. D. Tilley, L. M. Liable-Sands, et al., J. Am. Chem. Soc. 118, 10457 (1996). https://doi.org/10.1021/ja962103g

    Article  CAS  Google Scholar 

  18. J. Schneider, K. M. Krebs, and S. Freitag, Chem.-Eur. J. 22, 9812 (2016). https://doi.org/10.1002/chem.201601224

    Article  CAS  PubMed  Google Scholar 

  19. Z. W. Dong, M. Schmidtmann, and T. Muller, Chem.- Eur. J. 25, 10858 (2019). https://doi.org/10.1002/chem.201902238

    Article  CAS  PubMed  Google Scholar 

  20. Z. W. Dong, L. Albers, M. Schmidtmann, et al., Chem.-Eur. J. 25, 1098 (2019). https://doi.org/10.1002/chem.201805258

    Article  CAS  PubMed  Google Scholar 

  21. Z. Brown, P. Vasko, J. D. Erickson, et al., J. Am. Chem. Soc. 135, 6257 (2013). https://doi.org/10.1021/ja4003553

    Article  CAS  PubMed  Google Scholar 

  22. A. J. Ruddy, P. A. Rupar, K. J. Bladek, et al., Organometallics 29, 1362 (2010). https://doi.org/10.1021/om900977g

    Article  CAS  Google Scholar 

  23. T. Watanabe, Y. Kasai, and H. Tobita, Chem.-Eur. J. 25, 13491 (2019). https://doi.org/10.1002/chem.201903069

    Article  CAS  PubMed  Google Scholar 

  24. O. T. Summerscales, J. C. Fettinger, and P. P. Power, J. Am. Chem. Soc. 133, 11960 (2011). https://doi.org/10.1021/ja205816d

    Article  CAS  PubMed  Google Scholar 

  25. T. Y. Lai, K. L. Gullett, C. Y. Chen, et al., Organometallics 38, 1421 (2019). https://doi.org/10.1021/acs.organomet.9b00077

    Article  CAS  Google Scholar 

  26. J. G. Winter, P. Portius, G. Kociok-Kohn, et al., Organometallics 17, 4176 (1998). https://doi.org/10.1021/om980425i

    Article  CAS  Google Scholar 

  27. F. X. Kohl, R. Dickbreder, P. Jutzi, et al., J. Organomet. Chem. 309, C43 (1986). https://doi.org/10.1016/S0022-328X(00)99641-4

    Article  CAS  Google Scholar 

  28. J. Rouzaud, M. Joudat, A. Castel, et al., J. Organomet. Chem. 651, 44 (2002). https://doi.org/10.1016/S0022-328X(02)01221-4

    Article  CAS  Google Scholar 

  29. P. Jutzi, B. Hampel, M. B. Hursthouse, et al., Organometallics 5, 1944 (1986). https://doi.org/10.1021/om00141a003

    Article  CAS  Google Scholar 

  30. P. Jutzi, A. Becker, C. Leue, et al., Organometallics 10, 3838 (1991). https://doi.org/10.1021/om00057a012

    Article  CAS  Google Scholar 

  31. S. P. Constantine, H. Cox, P. B. Hitchcock, et al., Organometallics 19, 317 (2000). https://doi.org/10.1021/om990884z

    Article  CAS  Google Scholar 

  32. C. Drost, J. Griebel, R. Kirmse, et al., Angew. Chem., Int. Ed. 48, 1962 (2009). https://doi.org/10.1002/anie.200805328

    Article  CAS  Google Scholar 

  33. T. Sugahara, J. D. Guo, D. Hashizume, et al., J. Am. Chem. Soc. 141, 2263 (2019). https://doi.org/10.1021/jacs.9b00129

    Article  CAS  PubMed  Google Scholar 

  34. M. Lazraq, J. Escudie, C. Couret, et al., Angew. Chem., Int. Ed. 27, 828 (1988). https://doi.org/10.1002/anie.198808281

    Article  Google Scholar 

  35. F. Meiners, W. Saak, and M. Weidenbruch, Organometallics 19, 2835 (2000). https://doi.org/10.1021/om000284w

    Article  CAS  Google Scholar 

  36. M. Sturmann, W. Saak, M. Weidenbruch, et al., Heteroatom. Chem. 10, 554 (1999). https://doi.org/10.1002/(SICI)1098-1071(1999)10:7<554::AID-HC7>3.0.CO;2-X

    Article  CAS  Google Scholar 

  37. T. Sasamori, K. Inamura, W. Hoshino, et al., Organometallics 25, 3533 (2006). https://doi.org/10.1021/om060371+

    Article  CAS  Google Scholar 

  38. N. Nakata, N. Takeda, and N. Tokitoh, J. Am. Chem. Soc. 124, 6914 (2002). https://doi.org/10.1021/ja0262941

    Article  CAS  PubMed  Google Scholar 

  39. Y. Mizuhata, K. Inamura, and N. Tokitoh, Can. J. Chem. 92, 441 (2014). https://doi.org/10.1139/cjc-2013-0501

    Article  CAS  Google Scholar 

  40. C. Kaiya, K. Suzuki, and M. Yamashita, Organometallics 38, 610 (2019). https://doi.org/10.1021/acs.organomet.8b00938

    Article  CAS  Google Scholar 

  41. T. Tajima, T. Sasaki, T. Sasamori, et al., Appl. Organomet. Chem. 19, 570 (2005). https://doi.org/10.1002/aoc.810

    Article  CAS  Google Scholar 

  42. Z. M. Smallwood, M. F. Davis, Grant J. Hill, et al., Inorg. Chem. 58, 4583 (2019). https://doi.org/10.1021/acs.inorgchem.9b00150

    Article  CAS  PubMed  Google Scholar 

  43. D. V. Korol’kov andG. A. Skorobogatov, Theoretical Chemistry (SPbGU, St. Petersburg, 2004), p. 503 [in Russian].

  44. V. N. Serezhkin and Yu. A. Buslaev, Russ. J. Inorg. Chem. 42, 1064 (1997).

    Google Scholar 

  45. D. V. Pushkin, V. N. Serezhkin, M. O. Karasev, and E. A. Kravchenko, Russ. J. Inorg. Chem. 55, 523 (2010).

    Article  CAS  Google Scholar 

  46. V. N. Serezhkin, M. O. Karasev, and L. B. Serezhkina, Radiochemistry 55, 137 (2013).

    Article  CAS  Google Scholar 

  47. V. A. Blatov, V. A. Pol’kin, and V. N. Serezhkin, Crystallogr. Rep. 39, 402 (1994).

    Google Scholar 

  48. V. N. Serezhkin, A. G. Verevkin, D. V. Pushkin, and L. B. Serezhkina, Russ. J. Coord. Chem. 34, 225 (2008).

    Article  CAS  Google Scholar 

  49. V. N. Serezhkin, L. B. Serezhkina, and D. V. Pushkin, J. Struct. Chem. 50, S14 (2009).

    Article  CAS  Google Scholar 

  50. Yu. K. Egorov-Tismenko, Crystallography and Crystal Chemistry (KDU, Moscow, 2005), p. 592 [in Russian].

    Google Scholar 

Download references

Funding

This study was financially supported by the Russian Science Foundation (project no. 20-73-10250).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. O. Karasev.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karasev, M., Fomina, V., Karaseva, I. et al. GeCn Coordination Polyhedra in the Crystal Structures. Russ. J. Phys. Chem. 97, 1929–1939 (2023). https://doi.org/10.1134/S0036024423090078

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024423090078

Keywords:

Navigation