Skip to main content
Log in

Charge Density Study, DFT Calculations, Hirshfield Surface Analysis and Molecular Docking of (Z)-3-N-(Ethyl)-2-N '-(3-methoxyphenyl imino) thiazolidine-4-one

  • STRUCTURE OF MATTER AND QUANTUM CHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

In this work, the electron density distribution of (Z)-3-N-(ethyl)-2-N '-(3-methoxyphenyl imino) thiazolidine-4-one is determined by single-crystal X-ray refinements using a spherical structure factors and multipolar model of Hansen and Coppens. The following crystal properties are determined: laplacian of electron density and critical points. These parameters are basic for understanding the nature of intra- and intermolecular charge transfer and to highlight the chemical reactivity of the molecule. From the deformation density maps, density accumulations are visible in bonding as well as in the lone-pair regions of oxygen atoms (O1 and O2). The results of reduced density gradient, of natural bond orbital and of Hirshfeld surface analysis allow obtaining respectively; information’s of the intra non-bonded interactions, charge transfer and to understand what kind of interatomic contacts give the largest contributions in crystal structure. The relative high value of local reactivity descriptors indicate that S atom is the most preferred site for nucleophilic attacks whereas C4 and C8 sites are the most nucleophilic centers. In addition, the compound under investigation presents a biological activity when it is docked into the protein (PDB ID: 2AZ5) with the binding energy system of –6.3 kcal/mol. This compound showed excellent interaction with amino acids constitutes this protein and showed significant inhibition of tumor necrosis factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.

Similar content being viewed by others

REFERENCES

  1. D. Havrylyuk, B. Zimenkovsky, O. Vasylenko, A. Gzella, and R. Lesyk, J. Med. Chem. 55, 8630 (2012).

    Article  CAS  PubMed  Google Scholar 

  2. M. Fesatidou, P. Zagaliotis, C. Camoutsis, A. Petrou, P. Eleftheriou, and C. Tratrat, Bioorg. Med. Chem. 26, 4664 (2018).

    Article  CAS  PubMed  Google Scholar 

  3. I. N. Colmers, S. L. Bowker, S. R. Majumdar, and J. A. Johnson, Can. Med. Assoc. J. 184, E675 (2012).

  4. S. Nirwan, V. Chahal, and R. Kakkar, J. Heterocycl. Chem. 56, 1239 (2019).

    Article  CAS  Google Scholar 

  5. J. L. Pinto, J. A. Henao, and V. Kouznetsov, Powder Diffract. 33, 225 (2018).

    Article  CAS  Google Scholar 

  6. A. Djafri, A. Chouaih, J.-C. Daran, A. Djafri, and F. Hamzaoui, Acta Crystallogr., E 73, 511 (2017). https://doi.org/10.1107/S205698017003218

    Article  CAS  Google Scholar 

  7. R. Rahmani, A. Djafri, J.-C. Daran, A. Djafri, A. Chouaih, and F. Hamzaoui, Acta Crystallogr., E 72, 155 (2016).

    Article  CAS  Google Scholar 

  8. M. Boulakoud, K. Toubal, S. Yahiaoui, G. Chita, A. Chouaih, and A. Djafri, J. Struct. Chem. 56, 1373 (2015).

    Article  CAS  Google Scholar 

  9. N. Benhalima, K. Toubal, A. Chouaih, G. Chita, S. Maggi, A. Djafri, and F. Hamzaoui, J. Chem. Crystallogr. 41, 1729 (2011).

    Article  CAS  Google Scholar 

  10. Y. Megrouss, F. Triki-Baara, N. Boukabcha, A. Chouaih, A. Hatzidimitriou, A. Djafri, and F. Hamzaoui, Acta Chim. Slov. 66, 490 (2019).

    Article  CAS  PubMed  Google Scholar 

  11. T. Gruene and E. Mugnaioli, Chem. Rev. 121, 11823 (2021). https://doi.org/10.1021/acs.chemrev.1c00207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. B. T. W. Lo, L. Ye, and Sh. Ch. E. Tsang, Chemistry 4, 1778 (2018). https://doi.org/10.1016/j.chempr.2018.04.018

    Article  CAS  Google Scholar 

  13. E. C. Escudero-Adán, A. Bauzá, A. Frontera, and P. Ballester, Chem. Phys. Chem. 16, 2530 (2015). https://doi.org/10.1002/cphc.201500437

    Article  CAS  PubMed  Google Scholar 

  14. P. W. Betteridge, J. R. Carruthers, R. I. Cooper, K. Prout, and D. J. Watkin, J. Appl. Crystallogr. 36, 1487 (2003). https://doi.org/10.1016/j.chempr.2018.04.018

    Article  CAS  Google Scholar 

  15. L. Palatinus and G. Chapuis, J. Appl. Crystallogr. 40, 786 (2007). https://doi.org/10.1107/S0021889807029238

    Article  CAS  Google Scholar 

  16. N. K. Hansen and P. Coppens, Acta Crystallogr., A 34, 909 (1978). https://doi.org/10.1107/S0567739478001886

    Article  Google Scholar 

  17. C. Jelsch, B. Guillot, A. Lagoutte, and C. Lecomte, J. Appl. Crystallogr. 38, 38 (2005). https://doi.org/10.1107/S0021889804025518

    Article  CAS  Google Scholar 

  18. P. Coppens, X-Ray Charge Densities and Chemical Bonding, Vol. 4 of IUCr Texts on Crystallography (Oxford, New York, 1997).

  19. M. A. Spackman, Ann. Rep. Prog. Chem. C 94, 177 (1998). https://doi.org/10.1039/PC09417777

    Article  CAS  Google Scholar 

  20. E. R. Johnson, S. Keinan, P. Mori-Sánchez, J. Contreras-García, A. J. Cohen, and W. Yang, J. Am. Chem. Soc. 132, 6498 (2010). https://doi.org/10.1021/ja100936w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. E. D. Glendening, J. K. Badenhoop, A. E. Reed, J. E. Carpenter, and F. Weinhold, NBO Version 3.1 (Theor. Chem. Inst., Univ. Wisconsin, Madison, WI, 1995).

    Google Scholar 

  22. M. J. Frisch et al., Gaussian 09, Revision A.11.4 (Gaussian Inc., Wallingford, CT, 2009).

    Google Scholar 

  23. F. Weinhold and C. R. Landis, Chem. Educ. Res. Pract. 2, 91 (2001). https://doi.org/10.1039/B1RP90011K

    Article  CAS  Google Scholar 

  24. L. J. Farrugia, J. Appl. Crystallogr. 45, 849 (2012). https://doi.org/10.1107/S0021889812029111

    Article  CAS  Google Scholar 

  25. R. F. W. Bader, Atoms in Molecules: A Quantum Theory (Clarendon, Oxford, UK, 1990).

    Google Scholar 

  26. C. Kalaiarasi, C. George, and R. G. Gonnade, Acta Crystallogr., B 75, 942 (2019). https://doi.org/10.1107/S2052520619011272

    Article  CAS  Google Scholar 

  27. R. F. W. Bader, J. Phys. Chem. A 113, 10391 (2009). https://doi.org/10.1021/jp906341r

    Article  CAS  PubMed  Google Scholar 

  28. T. S. Koritsanszky and P. Coppens, Chem. Rev. 101, 1583 (2001). https://doi.org/10.1021/cr990112c

    Article  CAS  PubMed  Google Scholar 

  29. H. Benaissi, M. Drissi, S. Yahiaoui, and Y. Megrouss, J. Optoelectron. Biomed. Mater. 10, 73 (2018).

    Google Scholar 

  30. Tian Lu and Feiwu Chen, J. Comput. Chem. 33, 580 (2012). https://doi.org/10.1002/jcc.22885

    Article  CAS  PubMed  Google Scholar 

  31. W. Humphrey, A. Dalke, and K. Schulten, J. Mol. Graph. 14, 33 (1996). https://doi.org/10.1016/0263-7855(96)00018-5

    Article  CAS  PubMed  Google Scholar 

  32. M. Cerón, T. Gomez, M. Calatayud, and C. Cárdenas, J. Phys. Chem. A 124, 2826 (2020). https://doi.org/10.1021/acs.jpca.0c00950

    Article  CAS  PubMed  Google Scholar 

  33. P. W. Ayers, W. Yang, and L. J. Bartolotti, in Chemical Reactivity Theory: A Density Functional View, Ed. by P. K. Chattaraj (CRC, Taylor and Francis Group, Boca Raton, 2010).

    Google Scholar 

  34. N. Khelloul, K. Toubal, N. Benhalima, R. Rahmani, A. Chouaih, A. Djafri, and F. Hamzaoui, Acta Chim. Slov. 63, 619 (2016). https://doi.org/10.17344/acsi.2016.2362

    Article  CAS  PubMed  Google Scholar 

  35. S. K. Wolff, D. J. Grimwood, J. J. McKinnon, D. Jayatilaka, and M. A. Spackman, Crystal Explorer 3.1 (Univ. Western Austral., Perth, Australia, 2012).

    Google Scholar 

  36. R. Vafazadeh, A. Kazemi-nasab, and A. C. Willis, Acta Chim. Slov. 66, 1010 (2019). https://doi.org/10.17344/acsi.2019.5333

    Article  CAS  PubMed  Google Scholar 

  37. L. Bejaoui, J. Rohlíček, V. Eigner, A. Ismail, M. El Bour, and R. Ben Hassen, Acta Chim. Slov. 66, 603 (2019). https://doi.org/10.17344/acsi.2019.5002

    Article  CAS  PubMed  Google Scholar 

  38. PASS Online prediction. http://www.way2drug.com/passonline/.

  39. P. P. Shinoj Kumar, G. Krishnaswamy, N. R. Desai, S. Sreenivasa, and D. B. Aruna Kumar, Chem. Data Collect. 31, 100617 (2021). https://doi.org/10.1016/j.cdc.2020.100617

  40. R. P. D. Bank, RCSB PDB: Homepage. https://www.rcsb.org/.

  41. H. T. Idriss and J. H. Naismith, J. Micro. Res. Tech. 50, 184 (2000). https://doi.org/10.1002/1097-0029(20000801)50:3<184::AID-JEMT2>3.0.CO;2-H

    Article  CAS  Google Scholar 

  42. O. T. P. Kim, M. D. Le, H. X. Trinh, and H. V. Nong, Biophys. Physicobiol. 13, 173 (2016). https://doi.org/10.2142/biophysico.13.0_173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Accelrys Software Inc., Discovery Studio Modeling Environment, Releases 3.5 (Accelrys Discovery Studio, San Diego, 2012).

    Google Scholar 

  44. O. Trott and A. J. Olson, J. Comput. Chem. 31, 455 (2010). https://doi.org/10.1002/jcc.21334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. R. S. Shinde, V. H. Masand, and M. K. Patil, Indian J. Pharm. Sci. 81, 851 (2019). https://doi.org/10.36468/pharmaceutical-sciences.579

    Article  CAS  Google Scholar 

  46. T. Topal, Y. Zorlu, and N. Karapınar, J. Mol. Struct. 1239, 130514 (2021). https://doi.org/10.1016/j.molstruc.2021.130514

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Youcef Megrouss or Salem Yahiaoui.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Megrouss, Y., Yahiaoui, S., Boukabcha, N. et al. Charge Density Study, DFT Calculations, Hirshfield Surface Analysis and Molecular Docking of (Z)-3-N-(Ethyl)-2-N '-(3-methoxyphenyl imino) thiazolidine-4-one. Russ. J. Phys. Chem. 97, 1731–1745 (2023). https://doi.org/10.1134/S0036024423080319

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024423080319

Keywords:

Navigation