Skip to main content
Log in

Fe- and Cu–Zn-Containing Catalysts Based on Natural Aluminosilicate Nanotubes and Zeolite H-ZSM-5 in the Hydrogenation of Carbon Dioxide

  • CHEMICAL KINETICS AND CATALYSIS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Iron- and Cu–Zn-containing carbon dioxide hydrogenation catalysts based on natural aluminosilicate nanotubes and zeolite H-ZSM-5 are synthesized. Their textural and acidic properties are studied via low-temperature nitrogen adsorption–desorption, temperature-programmed desorption of ammonia, temperature-programmed reduction of hydrogen, and elemental analysis. The effect the temperatures of the reaction have on the conversion of CO2 and distribution of its product is studied. Catalysts based on aluminosilicate halloysite nanotubes exhibit methanol and С2–С4 hydrocarbon selectivities of 88 and 16%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. H. Yang, Z. Xu, M. Fan, et al., J. Environ. Sci. 20, 14 (2008).

    Article  CAS  Google Scholar 

  2. M. Mikkelsen, M. Jørgensen, and F. C. Krebs, Energy Environ. Sci. 3, 43 (2010).

    Article  CAS  Google Scholar 

  3. G. Férey, C. Serre, T. Devic, et al., Chem. Soc. Rev. 40, 550 (2011). https://doi.org/10.1039/c0cs00040j

    Article  CAS  PubMed  Google Scholar 

  4. A. J. Hunt, E. H. K. Sin, R. Marriott, and J. H. Clark, ChemSusChem 3, 306 (2010).

    Article  CAS  PubMed  Google Scholar 

  5. G. Centi and S. Perathoner, Stud. Surf. Sci. Catal. 153, 1 (2004).

    Article  CAS  Google Scholar 

  6. P. S. Sai Prasad, J. W. Bae, K. W. Jun, and K. W. Lee, Catal. Surv. Asia 12, 170 (2008).

    Article  Google Scholar 

  7. N. D. Evdokimenko, A. L. Kustov, K. O. Kim, et al., Funct. Mater. Lett. 13, 2040004 (2020).

  8. V. I. Bogdan, A. E. Koklin, A. L. Kustov, et al., Molecules 26, 2883 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. A. M. Kovalskii, I. N. Volkov, N. D. Evdokimenko, et al., Appl. Catal. B: Environ. 303, 120891 (2022).

  10. A. S. Konopatsky, K. L. Firestein, N. D. Evdokimenko, et al., J. Catal. 402, 130 (2021).

    Article  CAS  Google Scholar 

  11. P. Frontera, A. Macario, A. Malara, et al., Funct. Mater. Lett. 11, 1850061 (2018).

  12. N. Evdokimenko, Z. Yermekova, S. Roslyakov, et al., Materials 15, 5129 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. R. P. Ye, J. Ding, W. Gong, et al., Nat. Commun. 10, 1 (2019).

    Article  Google Scholar 

  14. G. Wang, D. Mao, X. Guo, and J. Yu, Int. J. Hydrogen Energy 44, 4197 (2019).

    Article  CAS  Google Scholar 

  15. O. Tursunov, L. Kustov, and A. Kustov, Oil Gas Sci. Technol. 72 (5), 30 (2017).

    Article  Google Scholar 

  16. N. D. Evdokimenko, G. I. Kapustin, O. P. Tkachenko, et al., Molecules 27, 1065 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Z. Li, Y. Qu, J. Wang, et al., Joule 3, 570 (2019).

    Article  CAS  Google Scholar 

  18. A. Rafiee, K. R. Khalilpour, D. Milani, et al., J. Environ. Chem. Eng. 6, 5771 (2018).

    Article  CAS  Google Scholar 

  19. Y. Ni, Z. Chen, Y. Fu, et al., Nat. Commun. 9 (1), 1 (2018).

    Article  Google Scholar 

  20. Y. Wang, L. Tan, M. Tan, et al., ACS Catal. 9, 895 (2019).

    Article  CAS  Google Scholar 

  21. Z. Li, J. Wang, Y. Qu, et al., ACS Catal. 7, 8544 (2017).

    Article  CAS  Google Scholar 

  22. P. Gao, S. Li, X. Bu, et al., Nat. Chem. 9, 1019 (2017).

    Article  CAS  PubMed  Google Scholar 

  23. J. Wang, A. Zhang, X. Jiang, et al., J. CO2 Util. 27, 81 (2018)

  24. X. Liu, M. Wang, and C. Zhou, Chem. Commun. 54, 140 (2017).

    Article  Google Scholar 

  25. P. Gao, S. Dang, S. Li, et al., ACS Catal. 8, 57 (2018).

    Google Scholar 

  26. J. Wang, Z. You, Q. Zhang, et al., Catal. Today 215, 18 (2013).

    Article  Google Scholar 

  27. J. Wei, Q. Ge, R. Yao, et al., Nat. Commun. 8 (1), 1 (2017).

    Article  Google Scholar 

  28. M. Rubtsova, E. Smirnova, S. Boev, et al., Microporous Mesoporous Mater. 330, 111622 (2022).

  29. M. I. Afokin, E. M. Smirnova, A. V. Starozhitskaya, et al., Chem. Technol. Fuels Oils 55, 682 (2020).

    Article  CAS  Google Scholar 

  30. N. R. Demikhova, S. S. Boev, M. V. Reshetina, et al., Pet. Chem. 61, 1085 (2021).

    Article  CAS  Google Scholar 

  31. E. M. Smirnova, D. P. Melnikov, N. R. Demikhova, et al., Pet. Chem. 61, 773 (2021).

    Article  CAS  Google Scholar 

  32. A. Glotov, A. Vutolkina, A. Pimerzin, et al., Chem. Soc. Rev. 50, 9240 (2021).

    Article  CAS  PubMed  Google Scholar 

  33. S. Mosallanejad, B. Z. Dlugogorski, E. M. Kennedy, et al., ACS Omega 3, 5362 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. N. Zhu, Z. Lian, Y. Zhang, et al., Appl. Surf. Sci. 483, 536 (2019).

    Article  CAS  Google Scholar 

  35. G. G. Oseke, A. Y. Atta, B. Mukhtar, et al., J. King Saud Univ.-Eng. Sci. 33, 531 (2021).

    Google Scholar 

  36. O. B. Ayodele, S. F. H. Tasfy, N. A. M. Zabidi, et al., J. CO2 Util. 17, 273 (2017).

  37. Y. Liu, Y. Zhang, T. Wang, and N. Tsubaki, Chem. Lett. 36, 1182 (2007).

    Article  CAS  Google Scholar 

  38. W.-G. Cui, Y.-T. Li, L. Yu, et al., ACS Appl. Mater. Interfaces 13, 18693 (2021).

    Article  CAS  PubMed  Google Scholar 

  39. C. Li, X. Yuan, and K. Fujimoto, Appl. Catal. A: Gen. 469, 306 (2014).

    Article  CAS  Google Scholar 

  40. K. O. Kim, N. D. Evdokimenko, P. V. Pribytkov, et al., Russ. J. Phys. Chem. A 95, 2422 (2021).

    Article  CAS  Google Scholar 

  41. A. Bansode and A. Urakawa, J. Catal. 309, 66 (2014).

    Article  CAS  Google Scholar 

  42. R. Liu, Z. Ma, J. D. Sears, et al., J. CO2 Util. 41, 101290 (2020).

  43. R. W. Dorner, D. R. Hardy, F. W. Williams, et al., Appl. Catal. A: Gen. 373, 112 (2010).

    Article  CAS  Google Scholar 

  44. L. Lan, A. Wang, and Y. Wang, Catal. Commun. 130, 105761 (2019).

Download references

Funding

This work was performed as part of program no. АААА-А21-121011590083-9 “Fundamentals of the Development of Metallic and Composite Materials” of the Center for Information Technologies and Systems of Executive Authorities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Smirnova.

Ethics declarations

The authors declare they have no conflicts of interest.

Additional information

Translated by M. Timoshinina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnova, E.M., Evdokimenko, N.D., Reshetina, M.V. et al. Fe- and Cu–Zn-Containing Catalysts Based on Natural Aluminosilicate Nanotubes and Zeolite H-ZSM-5 in the Hydrogenation of Carbon Dioxide. Russ. J. Phys. Chem. 97, 1395–1401 (2023). https://doi.org/10.1134/S0036024423070270

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024423070270

Keywords:

Navigation