Skip to main content
Log in

Phase Transition Thermodynamics: Evaporation Enthalpy of 13 Naphthalene Derivatives

  • CHEMICAL THERMODYNAMICS AND THERMOCHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The quality of naphthalene derivatives in use is assessed by their phase transition thermodynamic properties. The naphthalene derivatives’ sublimation/vaporization enthalpy was determined at 298.15 K. The evaporation enthalpy of the compounds was estimated utilizing solution calorimetry-additive scheme approach. Adiabatic solution calorimetry was applied to measure the compounds’ solution enthalpies in the benzene solvent at 298.15 K. Additionally, using an additivity scheme approach, the solvation enthalpy for naphthalene derivatives was calculated. In addition, in order to measure the evaporation enthalpy of naphthalene derivatives, gas chromatography was also applied. The results of the evaporation enthalpies were quite compatible with those found in the published data. For the first time, the evaporation enthalpy of nine naphthalene derivatives was discovered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. A. Delle Site, J. Phys. Chem. Ref. Data 26, 157 (1997).

    Article  Google Scholar 

  2. B. N. Solomonov, M. A. Varfolomeev, R. N. Nagrimanov, et al., Thermochim. Acta 622, 88 (2015). https://doi.org/10.1016/j.tca.2015.09.022

    Article  CAS  Google Scholar 

  3. R. S. Abdullah and B. N. Solomonov, Chem. Thermodyn. Therm. Anal., 100087 (2022). https://doi.org/10.1016/j.ctta.2022.100087

  4. S. P. Verevkin and V. N. Emel’yanenko, Fluid Phase Equilib. 266, 64 (2008). https://doi.org/10.1016/j.fluid.2008.02.001

    Article  CAS  Google Scholar 

  5. R. Siewert, A. A. Samatov, R. N. Nagrimanov, and S. P. Verevkin, J. Chem. Thermodyn. 143, 106060 (2020). https://doi.org/10.1016/j.jct.2020.106060

  6. A. A. Zhabina, R. N. Nagrimanov, V. N. Emel’yanenko, and B. N. Solomonov, J. Chem. Thermodyn. 103, 69 (2016). https://doi.org/10.1016/j.jct.2016.08.002

    Article  CAS  Google Scholar 

  7. C. Gobble, J. Chickos, and S. P. Verevkin, J. Chem. Eng. Data 59, 1353 (2014). https://doi.org/10.1021/je500110d

    Article  CAS  Google Scholar 

  8. D. Lipkind and J. S. Chickos, J. Chem. Eng. Data 55, 698 (2010). https://doi.org/10.1021/je900422c

    Article  CAS  Google Scholar 

  9. J. Spencer and J. Chickos, J. Chem. Eng. Data 58, 3513 (2013). https://doi.org/10.1021/je4008052

    Article  CAS  Google Scholar 

  10. S. P. Verevkin, J. Chem. Thermodyn. 35, 1237 (2003).https://doi.org/10.1016/S0021-9614(03)00051-X

  11. R. N. Nagrimanov, A. A. Samatov, and B. N. Solomonov, Thermochim. Acta 710, 179155 (2022). https://doi.org/10.1016/j.tca.2022.179155

  12. J. S. Chickos, S. Hosseini, and D. G. Hesse, Thermochim. Acta 249, 41 (1995).https://doi.org/10.1016/0040-6031(95)90670-3

  13. C. Gobble, N. Rath, and J. Chickos, J. Chem. Eng. Data 58, 2600 (2013). https://doi.org/10.1021/je400498a

    Article  CAS  Google Scholar 

  14. D. D. Derrin, W. L. F. Armarego, and D. R. Perrin, Purification of Laboratory Chemicals (Pergamon, Oxford, 1980).

    Google Scholar 

  15. K. V. Zaitseva, M. A. Varfolomeev, and B. N. Solomonov, Thermochim. Acta 535, 8 (2012).

    Article  CAS  Google Scholar 

  16. K. V. Zaitseva, M. A. Varfolomeev, V. B. Novikov, and B. N. Solomonov, J. Chem. Thermodyn. 43, 1083 (2011).

    Article  CAS  Google Scholar 

  17. D. Hallén, S.-O. Nilsson, W. Rothschild, and I. Wadsö, J. Chem. Thermodyn. 18, 429 (1986).

    Article  Google Scholar 

  18. R. Sabbah, A. Xu-Wu, J. S. Chickos, et al., Thermochim. Acta 331, 93 (1999).

    Article  CAS  Google Scholar 

  19. T. C. Tran, G. A. Logan, E. Grosjean, et al., Org. Geochem. 37, 1190 (2006). https://doi.org/10.1016/j.orggeochem.2006.05.006

    Article  CAS  Google Scholar 

  20. B. N. Solomonov, M. A. Varfolomeev, R. N. Nagrimanov, et al., Thermochim. Acta 589, 164 (2014).

    Article  CAS  Google Scholar 

  21. M. I. Yagofarov, R. N. Nagrimanov, and B. N. Solomonov, Thermochim. Acta 646, 26 (2016). https://doi.org/10.1016/j.tca.2016.10.015

    Article  CAS  Google Scholar 

  22. M. A. V. Ribeiro da Silva, A. I. M. C. Lobo Ferreira, A. F. L. O. M. Santos, et al., J. Chem. Thermodyn. 42, 371 (2010). https://doi.org/10.1016/j.jct.2009.09.009

    Article  CAS  Google Scholar 

  23. B. N. Solomonov and M. I. Yagofarov, J. Mol. Liq. 319, 114330 (2020). https://doi.org/10.1016/j.molliq.2020.114330

  24. A. L. R. Silva, V. L. S. Freitas, and M. D. M. C. R. da Silva, Chemosphere 107, 203 (2014).

    Article  CAS  PubMed  Google Scholar 

  25. M. A. V. R. da Silva, M. L. C. C. H. Farrão, and A. J. M. Lopes, J. Chem. Thermodyn. 25, 229 (1993). https://doi.org/10.1006/jcht.1993.1022

    Article  Google Scholar 

  26. D. Ferro, V. Piacente, and M. Pelino, Rev. Roum. Chim. 26, 9 (1981). http://pascalfrancis.inist.fr/vibad/index.phpćtion=getRecordDetailandidt=PASCAL8130198585

  27. S. P. Verevkin, M. Georgieva, and S. V. Melkhanova, J. Chem. Eng. Data 52, 286 (2007). https://doi.org/10.1021/je060394v

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Abdullah.

Ethics declarations

The author declares that he has no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdullah, R.S. Phase Transition Thermodynamics: Evaporation Enthalpy of 13 Naphthalene Derivatives. Russ. J. Phys. Chem. 97, 1361–1367 (2023). https://doi.org/10.1134/S0036024423070245

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024423070245

Keywords:

Navigation