Skip to main content
Log in

Nanosized Titania for Removing Cr(VI) and As(III) from Aqueous Solutions

  • PHYSICAL CHEMISTRY OF SOLUTIONS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Results are described from studying the physicochemical properties of nanosized sorbents with a crystal structure of anatase and rutile, which are prepared by the high-energy milling of titania powders of respective modifications. Morphology, phase composition, and surface properties are studied by SEM, XRD, and XPS. The ξ-potential of sorbent suspensions as a function of pH is measured, and the point of zero charge is measured according to the shift in pH. It is found that milling for 8 h in an isopropyl alcohol medium results in a substantial increase in the number of crystallites with sizes of less than 10 nm; i.e., it greatly improves the sorption properties of titania with respect to ecotoxicants hexavalent chromium and trivalent arsenic ions, compared to the properties of the original material. The maximum amount of Cr(VI) is removed from aqueous solutions in acetate buffer medium at pH 5 and As(III) in hydrochloric acid medium at pH 2–3. A mechanism of adsorption is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. B. Rivas, B. Urbano, M. Bryjal, et al., in Innovative Materials and Methods for Water Treatment: Solutions for Arsenic and Chromium Removal, Ed. by M. Bryak (Routledge, London, 2016).

    Google Scholar 

  2. P. A. Demina, A. M. Zybinskii, G. M. Kuz’micheva, et al., Crystallogr. Rep. 59, 430 (2014). https://doi.org/10.1134/S1063774514030079

    Article  CAS  Google Scholar 

  3. B. Kurttekin, D. Özer, and N. Altuntaş Öztaş, Turk. J. Chem. 43, 492 (2019). https://doi.org/10.3906/kim-1808-6

    Article  CAS  Google Scholar 

  4. G. M. Kuz’micheva, E. V. Savinkina, L. N. Obolenskaya, et al., Crystallogr. Rep. 55, 866 (2010). https://doi.org/10.1134/S1063774510050287

    Article  CAS  Google Scholar 

  5. O. V. Mel’chakova, N. V. Pechishcheva, and A. D. Korobitsyna, Tsvet. Met., No. 1, 32 (2019). https://doi.org/10.17580/tsm.2019.01.05

  6. M. Uzunova-Bujnova, D. Dimitrov, D. Radev, et al., Mater. Chem. Phys. 110, 291 (2008). https://doi.org/10.1016/j.matchemphys.2008.02.005

    Article  CAS  Google Scholar 

  7. N. Pechishcheva, A. Korobitsyna, D. Ordinartsev, et al., Sep. Sci. Technol. 57, 180 (2022). https://doi.org/10.1080/01496395.2021.1891436

    Article  CAS  Google Scholar 

  8. Z. Luan, E. M. Maes, P. A. W. van der Heide, et al., Chem. Mater. 11, 3680 (1999). https://doi.org/10.1021/cm9905141

    Article  CAS  Google Scholar 

  9. V. V. Kaichev, Y. A. Chesalov, A. A. Saraev, et al., J. Catal. 338, 82 (2016). https://doi.org/10.1016/j.jcat.2016.02.022

    Article  CAS  Google Scholar 

  10. M. Kosmulski, Adv. Colloid Interface Sci. 296, 102519 (2021). https://doi.org/10.1016/j.cis.2021.102519

  11. S. Khalameida, E. Skwarek, W. Janusz, et al., Cent. Eur. J. Chem. 12, 1194 (2014). https://doi.org/10.2478/s11532-014-0568-5

    Article  CAS  Google Scholar 

  12. M. Kosmulski, E. Mączka, and L. Ruchomski, J. Colloid Interface Sci. 533, 34 (2019). https://doi.org/10.1016/j.jcis.2018.08.050

    Article  PubMed  CAS  Google Scholar 

  13. C. Balan, I. Volf, and D. Bilba, Chem. Ind. Chem. Eng. Q. 19, 615 (2013). https://doi.org/10.2298/CICEQ120531095B

    Article  CAS  Google Scholar 

  14. Z. Wei, K. Liang, Y. Wu, et al., J. Colloid Interface Sci. 462, 252 (2016). https://doi.org/10.1016/j.jcis.2015.10.018

    Article  PubMed  CAS  Google Scholar 

  15. M. E. Pena, G. P. Korfiatis, M. Patel, et al., Water Res. 39, 2327 (2005). https://doi.org/10.1016/j.watres.2005.04.006

    Article  PubMed  CAS  Google Scholar 

  16. A. L. Foster, G. E. Brown, and G. A. Parks, Environ. Sci. Technol. 32, 1444 (1998). https://doi.org/10.1021/es970846b

    Article  CAS  Google Scholar 

  17. S. Bang, M. Patel, L. Lippincott, and X. Meng, Chemosphere 60, 389 (2005). https://doi.org/10.1016/j.chemosphere.2004.12.008

    Article  PubMed  CAS  Google Scholar 

  18. N. Pechishcheva, A. Belozerova, and K. Shunyaev, in Proceedings of 18th Israeli-Russian Bi-National Workshop on Optimization of the Composition, Structure, and Properties of Metals, Oxides, Composites, Nano and Amorphous Materials (Ein Bokek, 2019), p. 194.

Download references

ACKNOWLEDGMENTS

This work was performed on equipment at the Ural-M shared resource center and the Boreskov Institute of Catalysis. The authors thank A.V. Varaksin for his assistance in determining the specific surface area of titania.

Funding

This work was supported by the Russian Science Foundation, project no. 21-73-20039.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. P. Ordinartsev.

Ethics declarations

The authors declare they have no conflict of interest.

Additional information

Translated by M. Timoshinina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ordinartsev, D.P., Pechishcheva, N.V., Valeeva, A.A. et al. Nanosized Titania for Removing Cr(VI) and As(III) from Aqueous Solutions. Russ. J. Phys. Chem. 96, 2408–2416 (2022). https://doi.org/10.1134/S0036024422110231

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024422110231

Keywords:

Navigation