Skip to main content
Log in

The Effect of External Electric Field on the Conformational Integrity of Trypsin Inhibitor: A Molecular Model Study

  • COLLOID CHEMISTRY AND ELECTROCHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The folding and unfolding of proteins under exogenous perturbation is still a topic of great interest. People have conducted in-depth studies on the biological and health effects of electrostatic fields. In this study, we studied the conformational changes of trypsin inhibitor under different electric fields (low electric fields of 0.2 and 0.5–0.8 V/nm), and with the increase of the electric field, the conformational changes became more severe. Protease inhibitors are substances that can combine with enzymes to reduce the decomposition rate of substrates that enzymes act on. They are widely used in our lives and have important research value in food safety and biomedicine. Root mean square deviation (RMSD), dipole moment analysis and intermolecular hydrogen bond analysis were used to study the conformational changes of this protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. S. Jain and E. Pirogova, in Proceedings of the IEEE Progress in Electromagnetics Research Symposium - Fall PIERS - FALL (2017), p. 1273.

  2. P. Norouzi and R. Ghiasi, Physics (Amsterdam, Neth.) 118 (24), e1781272 (2020).

  3. P. Norouzi, R. Ghiasi, and R. Fazaeli, Russ. J. Inorg. Chem. 65, 2053 (2021).

    Article  Google Scholar 

  4. L. Astrakas, C. Gousias, and M. Tzaphlidou, J. Appl. Phys. 109 (9), 094702 (2011).

  5. W.-H. Du, Y.-H. Han, F.-J. Huang, et al., Febs J. 274, 2596 (2007).

    Article  PubMed  CAS  Google Scholar 

  6. M. Breton, L. Delemotte, A. Silve, et al., J. Am. Chem. Soc. 134, 13938 (2012).

    Article  PubMed  CAS  Google Scholar 

  7. R. Day, B. J. Bennion, S. Ham, et al., J. Mol. Biol. 322, 189 (2002).

    Article  PubMed  CAS  Google Scholar 

  8. J. Wiedersich, S. Koehler, A. Skerra, et al., Proc. Natl. Acad. Sci. U. S. A. 105, 5756 (2008).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. V. F. Ur’yash and N. Y. Kokurina, Russ. J. Phys. Chem. A 87, 1632 (2013).

    Article  Google Scholar 

  10. C. M. Kelleher, J. A. O’mahony, A. L. Kelly, et al., Int. Dairy J. 85, 144 (2018).

    Article  CAS  Google Scholar 

  11. F. Qian, J. Sun, D. Cao, et al., Korean J. Food Sci. Animal Resour. 37, 44 (2017).

    Article  Google Scholar 

  12. M. L. Swicord, A. R. Sheppard, and Q. Balzano, J. Chem. Phys. 126, 091105 (2007);

  13. J. Chem. Phys. 127 (11) (2007).

  14. P. Marracino, F. Apollonio, M. Liberti, et al., J. Phys. Chem. B 117, 2273 (2013).

    Article  PubMed  CAS  Google Scholar 

  15. D. Roy, J. N. Cambre, and B. S. Sumerlin, Prog. Polym. Sci. 35, 278 (2010).

    Article  CAS  Google Scholar 

  16. A. Singh, R. Lahlali, S. K. Vanga, et al., Int. J. Food Propert. 19, 1217 (2016).

    Article  CAS  Google Scholar 

  17. V. A. Sirotkin and D. V. Korolev, Russ. J. Phys. Chem. 80, 929 (2006).

    Google Scholar 

  18. L. G. Astrakas, C. Gousias, and M. Tzaphlidou, J. Appl. Phys. 111 (7), 074702 (2012).

  19. B. H. Vagadia, S. K. Vanga, A. Singh, et al., Innov. Food Sci. Emerg. Technol. 35, 9 (2016).

    Article  Google Scholar 

  20. A. Budi, S. Legge, H. Treutlein, et al., Eur. Biophys. J. 33, 121 (2004).

    Article  PubMed  CAS  Google Scholar 

  21. N. J. English and D. A. Mooney, J. Chem. Phys. 126 (9), 2577 (2007).

  22. W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, et al., J. Chem. Phys. 79, 926 (1983).

    Article  CAS  Google Scholar 

  23. H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, et al., J. Chem. Phys. 81, 3684 (1984).

    Article  CAS  Google Scholar 

  24. X. Wang, Y. Li, X. He, et al., J. Phys. Chem. A 118, 8942 (2014).

    Article  PubMed  CAS  Google Scholar 

  25. W. Kabsch and C. Sander, Biopolymers (1983).

  26. S. S. Jain, A. Suresh, and E. Pirogova, J. Mol. Graph. Model. 103, 107799 (2021).

  27. A. Budi, F. S. Legge, H. Treutlein, et al., J. Phys. Chem. B 112, 7916 (2008).

    Article  PubMed  CAS  Google Scholar 

  28. A. Budi, F. S. Legge, and H. Treutlein, J. Phys. Chem. B (2005).

  29. V. Daneshdoost, R. Ghiasi, and A. Marjani, J. Struct. Chem. 61, 1691 (2020).

    Article  CAS  Google Scholar 

  30. Z. Kazemi, R. Ghiasi, and S. Jamehbozorgi, Adsorption 26, 905 (2019).

    Article  Google Scholar 

  31. R. Ghiasi, M. V. Sofiyani, and R. Emami, Biointerface Res. Appl. Chem. 11, 12454 (2021).

    CAS  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (62105196) and Shanghai Sailing Program (17YF1407000).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liang Xue or Chao Jiang.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, K., Ji, Mh., Chu, Fh. et al. The Effect of External Electric Field on the Conformational Integrity of Trypsin Inhibitor: A Molecular Model Study. Russ. J. Phys. Chem. 96, 2533–2540 (2022). https://doi.org/10.1134/S0036024422110103

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024422110103

Keywords:

Navigation