Skip to main content
Log in

Thermal Stability and Kinetics of Decomposition of Hydrogen Polyoxides H2O3 and H2O4 in Peroxy Radical Condensates

  • CHEMICAL KINETICS AND CATALYSIS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Experimental studies are performed of the kinetics of decomposition of peroxy radical condensates (PRC) under conditions of a rise in temperature according to a linear law and control during the process by measuring the pressure of gaseous products in a constant volume system. An original way of solving the inverse problem of non-isothermal kinetics is proposed that does not require transformation of experimental dependence P(T). Four stages of gas evolution during the decomposition of PRC are discovered, and their temperature intervals and kinetic characteristics are determined. The Raman spectra of peroxy radical condensates (PRC) are analyzed at different temperatures. Based on the results, it is proposed that the stages of decomposition be attributed to the decomposition reactions of hydrogen tetroxide H2O4 and trioxide H2O3. Temperature intervals of stability and kinetic characteristics of decomposition reactions of polyoxides H2O4 and H2O3 in the composition of PRC are established. The quantitative composition of freshly prepared condensates is determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. A. V. Levanov, O. Y. Isaikina, and V. V. Lunin, Russ. Chem. Rev. 86, 951 (2017).

    Article  CAS  Google Scholar 

  2. P. A. Giguère, Peroxyde d’hydrogene et polyoxydes d’hydrogene (Masson et Cie, Paris, 1975).

    Google Scholar 

  3. M. Venugopalan and R. A. Jones, Chemistry and Dissociated Water Vapor and Related Systems (Interscience, New York, 1968).

    Google Scholar 

  4. P. A. Giguère and K. Herman, Can. J. Chem. 48, 3473 (1970).

    Article  Google Scholar 

  5. J. L. Arnau and P. A. Giguère, J. Chem. Phys. 60, 270 (1974).

    Article  CAS  Google Scholar 

  6. X. Deglise and P. A. Giguère, Can. J. Chem. 49, 2242 (1971).

    Article  CAS  Google Scholar 

  7. G. Strle and J. Cerkovnik, Angew. Chem., Int. Ed. 54, 9917 (2015).

    Article  CAS  Google Scholar 

  8. J. Cerkovnik and B. Plesničar, Chem. Rev. 113, 7930 (2013).

    Article  CAS  Google Scholar 

  9. A. V. Levanov, D. V. Sakharov, A. V. Dashkova, et al., Eur. J. Inorg. Chem. 2011, 5144 (2011).

    Article  CAS  Google Scholar 

  10. A. V. Levanov, O. Ya. Isaikina, and V. V. Lunin, Russ. J. Phys. Chem. A 90, 2136 (2016).

    Article  CAS  Google Scholar 

  11. A. V. Levanov, O. Y. Isaykina, E. E. Antipenko, and V. V. Lunin, Chem. Phys. 447, 10 (2015).

    Article  CAS  Google Scholar 

  12. A. V. Levanov, O. Ya. Isaikina, E. E. Antipenko, and V. V. Lunin, Russ. J. Phys. Chem. A 88, 1488 (2014).

    Article  CAS  Google Scholar 

  13. A. V. Levanov, O. Y. Isaykina, E. E. Antipenko, and V. V. Lunin, J. Phys. Chem. A 118, 62 (2014).

    Article  CAS  Google Scholar 

  14. E. E. Antipenko, A. V. Levanov, and V. V. Lunin, Mosc. Univ. Chem. Bull. 52, 1 (2011).

    Article  Google Scholar 

  15. J. L. Arnau and P. A. Giguère, Can. J. Chem. 53, 2490 (1975).

    Article  CAS  Google Scholar 

  16. N. Hata and P. A. Giguère, Can. J. Chem. 44, 869 (1966).

    Article  CAS  Google Scholar 

  17. E. Ohara, Nippon Kagaku Kaishi 61, 569 (1940).

    Article  CAS  Google Scholar 

  18. R. A. Jones, W. Chan, and M. Venugopalan, J. Chem. Phys. 51, 1273 (1969).

    Article  CAS  Google Scholar 

  19. I. I. Skorokhodov, L. I. Nekrasov, N. I. Kobozev, and E. I. Makarova, Zh. Fiz. Khim. 35, 905 (1961).

    CAS  Google Scholar 

  20. A. V. Lazarev, E. E. Antipenko, B. V. Strakhov, and L. I. Nekrasov, Zh. Fiz. Khim. 48, 237 (1974).

    CAS  Google Scholar 

  21. A. R. Gromov, E. E. Antipenko, and B. V. Strakhov, Zh. Fiz. Khim. 64, 671 (1990).

    CAS  Google Scholar 

  22. L. I. Nekrasov, Doctoral (Chem.) Dissertation (Mosc. State Univ., Moscow, 1972).

  23. E. E. Antipenko, Cand. Sci. (Chem.) Dissertation (Mosc. State Univ., Moscow, 1975).

  24. W. W. Wendlandt, Thermal Methods of Analysis, 2nd ed. (Wiley, New York, 1974).

    Google Scholar 

  25. J. Šesták, Thermophysical Properties of Solids. Their Measurements and Theoretical Thermal Analysis (Elsevier Amsterdam, 1984).

    Google Scholar 

  26. V. Yu. Kramarenko, Vestn. Nats. Tekh. Univ. KhPI, Khim., Khim. Tekhnol. Ekol., No. 64 (1037), 64 (2013).

  27. S. Vyazovkin, Isoconversional Kinetics of Thermally Stimulated Processes (Springer, Cham, 2015).

    Book  Google Scholar 

  28. E. Jahnke, F. Emde, and F. Lösch, Tables of Higher Functions (McGraw-Hill, New York, 1960).

    Google Scholar 

  29. J. H. Flynn, Thermochim. Acta 300, 83 (1997).

    Article  CAS  Google Scholar 

  30. Xnumbers Ver.6.0.5.6M. http://www.thetropicalevents.com/Xnumbers60/. Accessed December 11, 2013.

  31. K. H. Geib and P. Harteck, Ber. Deutsch. Chem. Ges. B 65, 1551 (1932).

    Article  Google Scholar 

  32. N. I. Kobozev, I. I. Skorokhodov, L. I. Nekrasov, and E. N. Makarova, Zh. Fiz. Khim. 31, 1843 (1957).

    CAS  Google Scholar 

  33. A. B. Tsentsiper, M. S. Danilova, A. S. Kanishcheva, and A. I. Gorbanev, Zh. Neorg. Khim. 4, 1952 (1959).

    CAS  Google Scholar 

  34. Yu. A. Mal’tsev, I. I. Skorokhodov, and L. I. Nekrasov, Zh. Fiz. Khim. 37, 2740 (1963).

    Google Scholar 

  35. J. A. Wojtowicz, F. Martinez, and J. A. Zaslowsky, J. Phys. Chem. 67, 849 (1963).

    Article  CAS  Google Scholar 

  36. L. A. Reznitskii, K. G. Khomyakov, L. I. Nekrasov, and I. I. Skorokhodov, Zh. Fiz. Khim. 32, 87 (1958).

    CAS  Google Scholar 

  37. J. L. Arnau, P. A. Giguère, M. Abe, and R. C. Taylor, Spectrochim. Acta, Part A 30, 777 (1974).

    Article  Google Scholar 

  38. A. V. Levanov, E. E. Antipenko, and V. V. Lunin, Mosc. Univ. Chem. Bull. 51, 341 (2010).

    Article  Google Scholar 

  39. V. N. Kondrat’ev and E. E. Nikitin, Kinetics and Mechanism of Gas-Phase Reactions (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  40. B. H. J. Bielski and H. A. Schwarz, J. Phys. Chem. 72, 3836 (1968).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Levanov.

Additional information

Translated by M. Drozdova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levanov, A.V., Isaikina, O.Y. Thermal Stability and Kinetics of Decomposition of Hydrogen Polyoxides H2O3 and H2O4 in Peroxy Radical Condensates. Russ. J. Phys. Chem. 96, 1204–1214 (2022). https://doi.org/10.1134/S0036024422060140

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024422060140

Keywords:

Navigation