Skip to main content
Log in

Influence of Different Nitrogen-Enriched Precursors on the Structure and Properties of g-C3N4

  • PHOTOCHEMISTRY AND MAGNETOCHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Graphite carbon nitride has been developed for more than 10 yr since it was proposed in 2009. Due to its simple preparation process and good photocatalytic effect under visible light irradiation, the material has always been a hot research topic. In the past ten years, various g-C3N4 photocatalyst and its composite materials were prepared. Although these materials are diverse, they are made from only four kinds of raw materials, namely urea, thiourea, melamine and dicyandiamide. Starting from the most basic raw materials, the purpose of this experiment is to explore the differences in structure and properties of g-C3N4 synthesized from different raw materials. The experiment result expresses that the surface of the samples prepared by melamine and dicyandiamide is smooth, and the particles on the surface of the constituent materials are relatively large under the microscopic view, which is not conducive to the migration of photogenerated electrons and holes to the surface for reaction. The surface of the sample fired with urea and thiourea is rough and porous. The samples fired by urea and thiourea have rough and porous surfaces. The surface is composed of many small particles. When light irradiates the surface and generates carriers, the distance from the carriers to the surface becomes shorter, which reduces recombination and makes it more conducive to photocatalytic reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. M. R. Al-Mamun, S. Kader, M. S. Islam, and M. Z. H. Khan, J. Environ. Chem. Eng. 7, 103248 (2019).

  2. P. S. Basavarajappa, S. B. Patil, N. Ganganagappa, K. R. Reddy, A. V. Raghu, and C. V. Reddy, Int. J. Hydrogen Energy 45, 7764 (2020).

    Article  CAS  Google Scholar 

  3. H. Liu, Y. Feng, J. Shao, Y. Chen, Z. L. Wang, H. Li, X. Chen, and Z. Bian, Nano Energy 70, 104499 (2020).

  4. J. Shi, W. Huang, H. Zhu, J. Xiong, H. Bei, X. Wei, and S. Wang, Mater. Lett. 279, 128472 (2020).

  5. E. S. Baeissa and R. M. Mohamed, Ceram. Int. 40 (1, Part A), 841 (2014).

    Article  CAS  Google Scholar 

  6. H. Xiao, H. Pei, J. Liu, J. Cui, B. Jiang, Q. Hou, and W. Hu, Mater. Lett. 71, 145 (2012).

    Article  CAS  Google Scholar 

  7. K. S. Bhavsar, P. K. Labhane, V. R. Huse, R. B. Dhake, and G. H. Sonawane, Inorg. Chem. Commun. 121, 108215 (2020).

  8. J. Zhang, X. Fu, H. Hao, and W. Gan, J. Alloys Compd. 757, 134 (2018).

    Article  CAS  Google Scholar 

  9. C. C. Nascimento, G. R. S. Andrade, O. S. Santos, E. T. Neto, S. S. L. Costa, and I. F. Gimenez, Mater. Des. 127, 8 (2017).

    Article  CAS  Google Scholar 

  10. W. Ren, C. Wan, Z. Li, X. Liu, R. Zhang, X. Yang, and D.-J. Lee, Sci. Total Environ. 742, 140646 (2020).

  11. Z. Li, Z. Zhang, L. Wang, and X. Meng, J. Catal. 382, 40 (2020).

    Article  CAS  Google Scholar 

  12. X. Liu, L. Xu, Y. Huang, C. Qin, L. Qin, and H. J. Seo, Ceram. Int. 43, 12372 (2017).

    Article  CAS  Google Scholar 

  13. D. Wang, K. Tang, Z. Liang, and H. Zheng, J. Solid State Chem. 183, 361 (2010).

    Article  CAS  Google Scholar 

  14. X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J. M. Carlsson, K. Domen, and M. Antonietti, Nat. Mater. 8, 76 (2009).

    Article  CAS  Google Scholar 

  15. Y. Gong, H. Li, C. Jiao, Q. Xu, X. Xu, X. Zhang, Y. Liu, Z. Dai, X. Y. Liu, W. Chen, L. Liu, and D. Zhan, Appl. Catal. B 250, 63 (2019).

    Article  CAS  Google Scholar 

  16. D. Kim and K. Yong, Appl. Catal. B 282, 119538 (2020).

  17. Y. Yang, B. Mao, G. Gong, D. Li, Y. Liu, W. Cao, L. Xing, J. Zeng, W. Shi, and S. Yuan, Int. J. Hydrogen Energy 44, 15882 (2019).

    Article  CAS  Google Scholar 

  18. X. Hu, Y. Yong, Y. Xu, X. Hong, Y. Weng, X. Wang, and X. Yao, Appl. Surf. Sci. 531, 147348 (2020).

  19. Y. Kong, C. Lv, C. Zhang, and G. Chen, Appl. Surf. Sci. 515, 146009 (2020).

  20. H. Zeng, L. Liu, D. Zhang, Y. Wang, Z. Li, C. Liu, L. Zhang, and X. Cui, Mater. Chem. Phys. 258, 123830 (2020).

  21. N. de Jesus Martins, I. C. H. Gomes, G. T. S. T. da Silva, J. A. Torres, W. Avansi, C. Ribeiro, A. R. Malagutti, and H. A. J. L. Mourão, J. Alloys Compd. 856, 156798 (2021).

  22. M. Faisal, M. Jalalah, F. A. Harraz, A. M. El-Toni, A. Khan, and M. S. Al-Assiri, Ceram. Int. 46, 22090 (2020).

    Article  CAS  Google Scholar 

  23. Z. Shi, L. Rao, P. Wang, Y. Wang, and L. Zhang, Chemosphere 263, 128196 (2021).

  24. R. Manimozhi, M. Mathankumar, and A. P. G. Prakash, Optik 229, 165548 (2021).

  25. M. B. Shekardasht, M. H. Givianrad, P. Gharbani, Z. Mirjafary, and A. Mehrizad, Diamond Relat. Mater. 109, 108008 (2020).

  26. F. Yan, Y. Wu, L. Jiang, X. Xue, J. Lv, L. Lin, Y. Yu, J. Zhang, F. Yang, and Y. Qiu, ChemSusChem. 13, 876 (2020).

    Article  CAS  Google Scholar 

  27. W. J. Ong, L. L. Tan, Y. H. Ng, S. T. Yong, and S. P. Chai, Chem. Rev. 116, 7159 (2016).

    Article  CAS  Google Scholar 

  28. F. Li, Y. Huang, C. Gao, and X. Wu, Mater. Res. Bull. 144, 111488 (2021).

  29. P. Niu, M. Qiao, Y. Li, L. Huang, and T. Zhai, Nano Energy 44, 73 (2018).

    Article  CAS  Google Scholar 

  30. S. Yang, Y. Gong, J. Zhang, L. Zhan, L. Ma, Z. Fang, R. Vajtai, X. Wang, and P. M. Ajayan, Adv. Mater. 25, 2452 (2013).

    Article  CAS  Google Scholar 

  31. Q. Zhu, B. Qiu, M. Du, J. Ji, M. Nasir, M. Xing, and J. Zhang, ACS Sustainable Chem. Eng. 8, 7497 (2020).

    Article  CAS  Google Scholar 

  32. Z. Zhao, S. Luo, P. Ma, Y. Luo, W. Wu, Y. Long, and J. Ma, ACS Sustainable Chem. Eng. 8, 8814 (2020).

    Article  CAS  Google Scholar 

  33. J. Fu, C. Bie, B. Cheng, C. Jiang, and J. Yu, ACS Sustainable Chem. Eng. 6, 2767 (2018).

    Article  CAS  Google Scholar 

  34. S. L. Shinde, S. Ishii, T. D. Dao, R. P. Sugavaneshwar, T. Takei, K. K. Nanda, and T. Nagao, ACS Appl. Mater. Interfaces 10, 2460 (2018).

    Article  CAS  Google Scholar 

  35. L. He, M. Fei, J. Chen, Y. Tian, Y. Jiang, Y. Huang, K. Xu, J. Hu, Z. Zhao, Q. Zhang, H. Ni, and L. Chen, Data Brief 21, 501 (2018).

    Article  Google Scholar 

  36. Y. Hong, E. Liu, J. Shi, X. Lin, L. Sheng, M. Zhang, L. Wang, and J. Chen, Int. J. Hydrogen Energy 44, 7194 (2019).

    Article  CAS  Google Scholar 

  37. Y. Yang, F. Yang, Z. Li, N. Zhang, and S. Hao, Microporous Mesoporous Mater. 314, 110891 (2021).

  38. P. Velusamy, M. Sathiya, Y. Liu, S. Liu, R. Ramesh Babu, M. Aly Saad Aly, E. Elangovan, H. Chang, L. Mao, and R. Xing, Appl. Surf. Sci. 561, 150082 (2021).

  39. W. Ouyang, Y. Ji, S. Tan, Q. Tian, and Z. Tong, J. Alloys Compd. 866, 158964 (2021).

  40. P. Guo, F. Zhao, and X. Hu, Ceram. Int. 47, 16256 (2021).

    Article  CAS  Google Scholar 

  41. T. S. Natarajan, M. Thomas, K. Natarajan, H. C. Bajaj, and R. J. Tayade, Chem. Eng. J. 169, 126 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liguo Cao, Yuanliang Li or Zhanshen Zheng.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, L., Li, Y. & Zheng, Z. Influence of Different Nitrogen-Enriched Precursors on the Structure and Properties of g-C3N4. Russ. J. Phys. Chem. 96, 1112–1123 (2022). https://doi.org/10.1134/S0036024422050193

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024422050193

Keywords:

Navigation