Skip to main content
Log in

Hydrogen Bonds in a Water–Pyrrolidone System

  • ON THE 90th ANNIVERSARY OF THE BIRTH OF G.A. KRESTOV
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Structural properties of a mixture of water–2-pyrrolidone are studied using a set of physicochemical means. Spectral and numerical means are used to determine the parameters of hydrogen-bonded structures, and to calculate the structural and energy characteristics that describe the topology of hydrogen bonds under conditions of a change in the composition of the mixture. The most probable structure of the resulting hydrogen-bonded complexes has been determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. A. L. Harreus, R. Backes, J.-O. Eichler, et al., in Ullmann’s Encyclopedy in Industrial Chemistry (Wiley-VCH, Weinheim, Germany, 2011). https://doi.org/10.1002/14356007.a22_457.pub2

    Book  Google Scholar 

  2. G. Hradetzky, I. Hammerl, H. J. Bittrich, et al., Selective Solvents. Physical Sciences Data 31 (Elsevier, Amsterdam, 1989).

    Google Scholar 

  3. H. Yekeler, J. Comput. Aided. Mol. Des. 15, 287 (2001). https://doi.org/10.1023/A:1011190322569

    Article  CAS  PubMed  Google Scholar 

  4. A. E. Shchavlev, A. N. Pankratov, V. B. Borodulin, et al., J. Phys. Chem. A 109, 10982 (2005). https://doi.org/10.1021/jp053753m

    Article  CAS  PubMed  Google Scholar 

  5. P. Pey, A. K. Samanta, B. Bandyopadhyay, et al., Vibr. Spectrosc. 55, 126 (2011). https://doi.org/10.1016/j.vibspec.2010.09.013

    Article  CAS  Google Scholar 

  6. M. J. Dávila, R. Alcalde, and S. Aparicio, Ind. Eng. Chem. Res. 48, 1036 (2009). https://doi.org/10.1021/ie800911n

    Article  CAS  Google Scholar 

  7. H. Tang, S. Sun, and P. Wu, Appl. Spectrosc. 63, 1174 (2009). https://doi.org/10.1366/000370209789553147

    Article  CAS  PubMed  Google Scholar 

  8. K. S. Maiti, A. Samsonyuk, C. Scheurer, et al., Phys. Chem. Chem. Phys. 14, 16294 (2012). https://doi.org/10.1039/c2cp43114a

    Article  CAS  PubMed  Google Scholar 

  9. K. S. Maiti, Phys. Chem. Chem. Phys. 17, 24998 (2015). https://doi.org/10.1039/c5cp04272k

    Article  CAS  PubMed  Google Scholar 

  10. R. Alcalde, S. Aparicio, B. García, et al., New J. Chem. 29, 817 (2005). https://doi.org/10.1039/b417601d

    Article  CAS  Google Scholar 

  11. P. Pirila, I. Mutikainen, and J. Pursiainen, Z. Naturforsch., Sect. B 54, 1598 (1999).

    CAS  Google Scholar 

  12. S. Aparicio-Martínez and P. B. Balbuena, Mol. Simul. 33, 925 (2007). https://doi.org/10.1080/08927020701474422

    Article  CAS  Google Scholar 

  13. A. A. Dyshin, M. S. Kuz’mikov, A. A. Aleshonkova, et al., Sverkhkrit. Flyuidy: Teor. Prakt. 16 (1), 3 (2021). https://doi.org/10.34984/SCFTP.2021.16.1.001

    Article  Google Scholar 

  14. A. A. Dyshin and M. G. Kiselev, J. Chem. Eng. Data 64, 2536 (2019). https://doi.org/10.1021/acs.jced.9b00046

    Article  CAS  Google Scholar 

  15. D. M. Makarov, G. I. Egorov, and A. M. Kolker, J. Mol. Liq. 335, 116113 (2021). https://doi.org/10.1016/j.molliq.2021.116113

  16. M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian (Gaussian Inc., Wallingford CT, 2013).

    Google Scholar 

  17. T. H. Dunning, Jr., J. Chem. Phys. 90, 1007 (1989).

    Article  CAS  Google Scholar 

  18. A. Austin, G. A. Petersson, M. J. Frisch, et al., J. Chem. Theory Comput. 8, 4989 (2012).

    Article  CAS  Google Scholar 

  19. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon, Oxford, 1987).

  20. M. Abraham, E. Apol, R. Apostolov, et al., Gromacs User Manual, Version 4.6.7.

  21. H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma, J. Phys. Chem. 91, 6269 (1987).

    Article  CAS  Google Scholar 

  22. A. K. Malde, L. Zuo, M. Breeze, et al., J. Chem. Theory Comput. 7, 4026 (2011). https://doi.org/10.1021/ct200196m

    Article  CAS  PubMed  Google Scholar 

  23. J. George and N. V. Sastry, J. Chem. Eng. Data 49, 235 (2004). https://doi.org/10.1021/je0340809

    Article  CAS  Google Scholar 

  24. M. A. Krestyaninov, E. G. Odintsova, A. M. Kolker, et al., J. Mol. Liq. 264, 343 (2018).

    Article  CAS  Google Scholar 

  25. A. A. Dyshin, R. D. Oparin, and M. G. Kiselev, Russ. J. Phys. Chem. B 6, 868 (2012). https://doi.org/10.1134/S1990793112080106

    Article  CAS  Google Scholar 

  26. A. A. Dyshin, O. V. Eliseeva, G. V. Bondarenko, A. M. Kolker, and M. G. Kiselev, Russ. J. Phys. Chem. A 90, 2434 (2016). https://doi.org/10.1134/S0036024416120086

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project no. 20-03-00037.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. M. Makarov.

Additional information

Translated by M. Drozdova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makarov, D.M., Dyshin, A.A., Krestyaninov, M.A. et al. Hydrogen Bonds in a Water–Pyrrolidone System. Russ. J. Phys. Chem. 96, 685–690 (2022). https://doi.org/10.1134/S0036024422040215

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024422040215

Keywords:

Navigation