Skip to main content
Log in

Constructing a Complete Set of Homodesmic Reactions Using the Depth-First Search Procedure

  • STRUCTURE OF MATTER AND QUANTUM CHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

A graph-theoretical algorithm based on the depth-first search (DFS) procedure of graph analysis is proposed for determining a complete set of homodesmic reactions (HDRs) of organic compounds. The complete set of HDRs is constructed decomposing the molecular graph of a compound into a series of simpler components. Based on the resulting DFS algorithm, a program for plotting the HDR basis is devised that includes automated generation of the structures of homodesmic reaction participants and primary thermochemical analysis (i.e., calculating the heat effects of HDRs from absolute enthalpies of reactants obtained via user-selected quantum chemistry). The work of the algorithm is illustrated by the example of vinylcyclopropane. The use of complete sets of HDRs for the thermochemical analysis of molecular energetics is studied to determine its advantages: high precision; the possibility of controlling the reproducibility of data and screening out inconsistent or erroneous thermochemical data; quantitative consideration of the nonvalence structural effects in organic compounds; and block analysis of the thermochemistry of structurally similar organic compounds, which is analogous to the familiar concept of active thermochemical tables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. W. J. Hehre, R. Ditchfield, L. Radom, and J. A. Pople, J. Am. Chem. Soc. 92, 4796 (1970).

    Article  CAS  Google Scholar 

  2. K. N. Wheeler, P. Houk, V. R. Schleyer, and W. D. Allen, in Modern Electronic Structure Theory, Part 1, Ed. by D. Varkony (World Scientific, Singapore, 1995), p. 1462. https://doi.org/10.1021/ja805843n

  3. S. L. Khursan, Russ. J. Phys. Chem. A 76, 405 (2002).

    Google Scholar 

  4. S. L. Khursan, Russ. J. Phys. Chem. A 78 (Suppl. 1), S34 (2004).

    CAS  Google Scholar 

  5. D. S. Shaikhlislamov, M. R. Talipov, and S. L. Khursan, Russ. J. Phys. Chem. A 81, 235 (2007). https://doi.org/10.1134/S003602440702015X

    Article  CAS  Google Scholar 

  6. O. V. Dorofeeva, O. N. Ryzhova, and N. F. Moiseeva, Russ. J. Phys. Chem. A 82, 933 (2008). https://doi.org/10.1134/S0036024408060113

    Article  CAS  Google Scholar 

  7. O. V. Dorofeeva, O. N. Ryzhova, and M. A. Suntsova, J. Phys. Chem. A 117, 6835 (2013). https://doi.org/10.1021/jp404484q

    Article  CAS  PubMed  Google Scholar 

  8. S. M. Bachrach, J. Chem. Educ. 67, 907 (1990). https://doi.org/10.1021/ed067p907

    Article  CAS  Google Scholar 

  9. T. Dudev and C. Lim, J. Am. Chem. Soc. 120, 4450 (1998).

    Article  CAS  Google Scholar 

  10. I. Fishtik, J. Phys. Chem. A 116, 1854 (2012). https://doi.org/10.1021/jp211795s

    Article  CAS  PubMed  Google Scholar 

  11. P. Vijaya, M. O. Tadea, I. Fishtik, and R. Dattab, Comput. Chem. Eng., No. 49, 85 (2013).

  12. S. L. Khursan, A. S. Ismagilova, A. A. Akhmerov, and S. I. Spivak, Russ. J. Phys. Chem. A 90, 796 (2016). https://doi.org/10.1134/S0036024416030201

    Article  CAS  Google Scholar 

  13. S. L. Khursan, A. S. Ismagilova, and S. I. Spivak, Dokl. Phys. Chem. 474, 99 (2017). https://doi.org/10.1134/S0012501617060033

    Article  CAS  Google Scholar 

  14. B. Ruscic, R. E. Pinzon, M. L. Morton, et al., J. Phys. Chem. A 108, 9979 (2004).

    Article  CAS  Google Scholar 

  15. F. T. Ziganshina, A. I. Akhmet’yanova, A. S. Ismagilova, et al., Sist. Upravl. Inform. Tekhnol., No. 4 (74), 72 (2018).

  16. F. T. Ziganshina, A. S. Ismagilova, A. I. Akhmet’yanova, et al., Sist. Upravl. Inform. Tekhnol., No. 4 (78), 10 (2019).

  17. A. A. Akhmerov, A. S. Ismagilova, S. I. Spivak, and S. L. Khursan, State Registration Certificate of Computer Program No. 2015617060 (2015).

  18. A. A. Akhmerov, A. S. Ismagilova, S. I. Spivak, and S. L. Khursan, State Registration Certificate of Database No. 2015621003 (2015).

  19. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms, 3rd ed. (The MIT Press, Cambridge, MA, 2009).

    Google Scholar 

  20. S. W. Benson, Thermochemical Kinetics (Wiley, New York, 1968).

    Google Scholar 

  21. H. Y. Afeefy, J. F. Liebman, and S. E. Stein, in NIST Chemistry WebBook, NIST Standard Reference Database No. 69, Ed. by P. J. Linstrom and W. G. Mallard (NIST, Gaithersburg MD, 2020). https://doi.org/10.18434/T4D303

  22. W. R. Roth, O. Adamczak, R. Breuckmann, et al., Chem. Ber. 124, 2499 (1991).

    Article  CAS  Google Scholar 

  23. N. D. Lebedeva, N. M. Gutner, and L. F. Nazarova, in Thermodynamics of Organic Compounds, Interschool Collection of Articles, Ed. by I. B. Rabinovich (GGU im. N.I. Lobachevskogo, 1977), No. 6, p. 26 [in Russian].

  24. L. A. Curtiss, K. Raghavachari, P. C. Redfern, et al., J. Chem. Phys. 109, 7764 (1998).

    Article  CAS  Google Scholar 

  25. L. A. Curtiss, P. C. Redfern, and K. Raghavachari, J. Chem. Phys. 126, 84 (2007).

    Google Scholar 

  26. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, et al., Gaussian 09, Revision C.1 (Gaussian Inc., Wallingford CT, 2009).

    Google Scholar 

  27. E. S. Akhmetshina and S. L. Khursan, Thermochim. Acta 685, 178541 (2020). https://doi.org/10.1016/j.tca.2020.178541

    Article  CAS  Google Scholar 

  28. E. S. Akhmetshina and S. L. Khursan, Russ. Chem. Bull. 69, 76 (2020). https://doi.org/10.1007/s11172-020-2725-7

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

All quantum chemical calculations were made using equipment at the Chemistry shared resource center of the Ufa Institute of Chemistry and the Agidel regional shared resource center of the Ufa Federal Research Center.

Funding

This work was performed as part of a State Task for the Ufa Institute of Chemistry, topic no. AAAA-A20-120012090030-6. It was supported by the Russian Foundation for Basic Research, project no. 18-07-00584 A.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. L. Khursan, A. S. Ismagilova, F. T. Ziganshina or A. I. Akhmet’yanova.

Additional information

Translated by K. Utegnov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khursan, S.L., Ismagilova, A.S., Ziganshina, F.T. et al. Constructing a Complete Set of Homodesmic Reactions Using the Depth-First Search Procedure. Russ. J. Phys. Chem. 95, 1386–1393 (2021). https://doi.org/10.1134/S0036024421070141

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024421070141

Keywords:

Navigation