Skip to main content
Log in

Hydrothermal Synthesis of Monocrystalline CeO2 Polymeric Nano-Balls and Their Optical Properties

  • PHYSICAL CHEMISTRY OF NANOCLUSTERS AND NANOMATERIALS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

CeO2 particles of different morphologies had been successfully synthesized by a facile hydrothermal process with Ce(NO3)3⋅6H2O as cerium source, urea as precipitant and polyvinylpyrrolidone (PVP) as surfactant. The structure and optical properties of CeO2 nanocomposites were characterized by various techniques, including X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet-visible (UV‒Vis), photoluminescence (PL), and Raman spectroscopies. X-ray diffraction (XRD) data show that the synthesized CeO2 polymeric balls have a fluorite structure. According to the XRD, the grain size of the synthesized ceria (CeO2) becomes larger with the increase in the dosage of PVP, which is consistent with the Raman spectroscopy results. The band gaps (Eg) of cerium dioxide samples are larger than those of bulk ceria. The production of defects and the formation of oxygen vacancies can be explained as Ce4+ is reduced to Ce3+.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Z. U. Rehman, M. Uzair, H. T. Lim, and B. H. Koo, J. Alloys Compd. 726, 284 (2017).

    Article  Google Scholar 

  2. M. Mazidi, R. M. Behbahani, and A. Fazeli, Appl. Catal. B: Environ. 209, 190 (2017).

    Article  CAS  Google Scholar 

  3. H. Zhang, S. Yuan, J. L. Wang, M. C. Gong, and Y. Q. Chen, Chem Eng. J. 327, 1066 (2017).

    Article  CAS  Google Scholar 

  4. Y. Xie, Y. Y. Yin, S. H. Zeng, M. Y. Gao, and H. Q. Su, Catal. Commun. 99, 110 (2017).

    Article  CAS  Google Scholar 

  5. B. Dong, L. Y. Li, Z. F. Dong, R. Xu, and Y. Wu, Int. J. Hydrogen Energy 87, 1 (2017).

    Google Scholar 

  6. W. X. Zou, Y. Shao, Y. Pu, Y. D. Luo, J. F. Sun, K. L. Ma, C. J. Tang, F. Gao, and L. Dong, Appl. Catal. B: Environ. 218, 51 (2017).

    Article  CAS  Google Scholar 

  7. Y. Ono and H. Fujii, Ceram. Int. 41, 15231 (2015).

    Article  CAS  Google Scholar 

  8. M. E. Contreras-García, M. L. García-Benjume, V. I. Macías-Andrés, E. Barajas-Ledesma, A. Medina-Flores, and M. I. Espitia-Cabrera, Mater. Sci. Eng. B 183, 78 (2014).

    Article  Google Scholar 

  9. J. Calvache-Muñoz, F. A. Prado, and J. E. Rodríguez-Páez, Colloids Surf., A 529, 146 (2017).

    Article  Google Scholar 

  10. C. Zhang, F. M. Meng, and L. N. Wang, Mater. Lett. 130, 202 (2014).

    Article  CAS  Google Scholar 

  11. H. I. Chen and H. Y. Chang, Ceram. Int. 31, 795 (2005).

    Article  CAS  Google Scholar 

  12. F. S. Sangsefidi and M. Salavati-Niasari, Int. J. Hydrogen Energy 42, 2007 (2017).

    Google Scholar 

  13. I. A. Mudunkotuwa and V. H. Grassian, Environ. Sci. Nano 2, 429 (2015).

    Article  CAS  Google Scholar 

  14. D. Tomova, V. Iliev, A. Eliyas, and S. Rakovsky, Sep. Purif. Technol. 156, 715 (2015).

    Article  CAS  Google Scholar 

  15. C. C. Han, L. Yan, W. Zhao, and Z. F. Liu, Int. J. Hydrogen Energy 42, 12276 (2017).

    Article  CAS  Google Scholar 

  16. S. Ghasemi, S. Rahman Setayesh, A. Habibi-Yangjeh, M. R. Hormozi-Nezhad, and M. R. Gholami, J. Hazard. Mater. 199–200, 170 (2012).

    Article  Google Scholar 

  17. A. Primo, T. Marino, A. Corma, R. Molinari, and H. García, J. Am. Chem. Soc. 133, 6930 (2011).

    Article  CAS  Google Scholar 

  18. H. Liu, M. Wang, Y. Wang, Y. Liang, W. Cao, and Y. Su, J. Photochem. Photobiol. A: Chem. 223, 157 (2011).

    Article  CAS  Google Scholar 

  19. T. Cao, Y. Li, C. Wang, L. Wei, C. Shao, and Y. Liu, J. Sol–Gel. Sci. Technol. 55, 105 (2010).

    Article  CAS  Google Scholar 

  20. L. Q. Jing, J. Zhou, J. R. Durrant, J. W. Tang, D. N. Liu, and H. G. Fu, Energy Environ. Sci. 5, 6552 (2012).

  21. C. Guzmán, G. del Angel, R. Gómez, F. Galindo, R. Zanella, G. Torres, C. Angeles Chavez, and J. L. G. Fierro, J. Nano Res. 5, 13 (2009).

    Article  Google Scholar 

  22. I. Kosacki, V. Petrovsky, H. U. Anderson, and P. J. Colomban, J. Am. Ceram. Soc. 85, 2646 (2002).

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Anhui Provincial Natural Science Foundation of China (1508085SME219).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fanming Meng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fanming Meng, Wu, H. & Gao, C. Hydrothermal Synthesis of Monocrystalline CeO2 Polymeric Nano-Balls and Their Optical Properties. Russ. J. Phys. Chem. 95, 754–761 (2021). https://doi.org/10.1134/S003602442104018X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003602442104018X

Keywords:

Navigation