Skip to main content
Log in

Molecular Structures of Heteroligand Macrotetracyclic Complexes of 3d Ions with Phthalocyanine and Fluoride Anion Studied by Density Functional Theory

  • STRUCTURE OF MATTER AND QUANTUM CHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The molecular structures of the (6666) macrotetracyclic heteroligand chelates of M(III) (M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu) with the (NNNN)-donor-atom ligand phthalocyanine and fluoride anion were calculated using the density functional theory (DFT) in the OPBE/TZVP version. All these metal complexes have the structure of a slightly distorted tetragonal pyramid, where the M(III) complexing agent lies over its base consisting of nitrogen donor atoms. The values ​​of the most important bond lengths and bond and non-bond angles in these complexes were given. All the six-membered metal chelate cycles in eight of these nine metal chelates are identical both in the sum of their bond angles and assortment; the only exception is the Mn(III) complex, in which these metallocycles are equal only in pairs. Pronounced electron density delocalization takes place over the entire macrocycle in each of these coordination compounds. The standard enthalpy, entropy, and Gibbs energy of formation of these compounds were also calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. K. Kasuda and M. Tsutsui, Coord. Chem. Rev. 32, 67 (1980).

    Article  Google Scholar 

  2. A. L. Thomas, Phthalocyanines. Research and Applications (CRC, Boca Raton, FL, 1990).

    Google Scholar 

  3. W. Sliva and B. Mianovska, Trans. Met. Chem. 25, 491 (2000).

    Article  Google Scholar 

  4. G. M. Mamardashvili, N. Z. Mamardashvili, and O. I. Koifman, Russ. Chem. Rev. 77, 59 (2008).

    Article  CAS  Google Scholar 

  5. T. N. Lomova, Axially Coordinated Metalloporphyrins in Science and Practice (URSS-KRASAND, Moscow, 2018) [in Russian].

    Google Scholar 

  6. O. G. Khelevina and A. S. Malyasova, J. Porphyr. Phthalocyan. 23, 1251 (2019).

    Article  CAS  Google Scholar 

  7. Kikuko Okada, Atsumi Sumida, Rie Inagaki, and Masahiko Inamo, Inorg. Chim. Acta. 392, 473 (2012).

    Article  CAS  Google Scholar 

  8. C. Colomban, E. V. Kudric, P. Afanasiev, and A. B. Sorokin, J. Am. Chem. Soc. 136, 11321 (2014). https://doi.org/10.1021/ja505437h

    Article  CAS  PubMed  Google Scholar 

  9. J. W. Buchler and K. Rohbock, Inorg. Nucl. Chem. Lett. 8, 1073 (1972).

    Article  CAS  Google Scholar 

  10. R. Guilard, P. Richard, M. El Borai, and E. Laviron, J. Chem. Soc., Chem Commun., No. 11, 516 (1980). https://doi.org/10.1039/C39800000516

  11. C. Lecomte, J. Protas, P. Richard, et al., J. Chem. Soc., Dalton Trans., No. 2, 247 (1982). https://doi.org/10.1039/DT9820000247

  12. P. A. Stuzhin, in Fluorine in Heterocyclic Chemistry, Ed. by V. G. Nenajdenko, Vol. 1, 5: Membered Heterocycles and Macrocycles (Springer, Heidelberg, 2014), p. 621.

  13. I. A. Lebedeva (Yablokova), S. S. Ivanova, Y. A. Zhabanov, et al., J. Fluorine Chem. 214, 86 (2018).

    Article  CAS  Google Scholar 

  14. D. V. Chachkov and O. V. Mikhailov, Russ. J. Inorg. Chem. 58, 174 (2013). https://doi.org/10.1134/S0036023613020186

    Article  CAS  Google Scholar 

  15. D. V. Chachkov and O. V. Mikhailov, Russ. J. Inorg. Chem. 59, 218 (2014). https://doi.org/10.1134/S0036023614030024

    Article  CAS  Google Scholar 

  16. O. V. Mikhailov and D. V. Chachkov, Russ. J. Inorg. Chem. 60, 1354 (2015). https://doi.org/10.1134/S003602361511011X

    Article  CAS  Google Scholar 

  17. A. Schaefer, H. Horn, and R. Ahlrichs, J. Chem. Phys. 97, 2571 (1992). https://doi.org/10.1063/1.463096

    Article  CAS  Google Scholar 

  18. A. Schaefer, C. Huber, and R. Ahlrichs, J. Chem. Phys. 100, 5829 (1994). https://doi.org/10.1063/1.467146

    Article  CAS  Google Scholar 

  19. W.-M. Hoe, A. Cohen, and N. C. Handy, Chem. Phys. Lett. 341, 319 (2001). https://doi.org/10.1016/S0009-2614(01)00581-4

    Article  CAS  Google Scholar 

  20. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  PubMed  Google Scholar 

  21. H. Paulsen, L. Duelund, H. Winkler, et al., Inorg. Chem. 40, 2201 (2001).https://doi.org/10.1021/ic000954q

    Article  CAS  PubMed  Google Scholar 

  22. M. Swart, A. R. Groenhof, A. W. Ehlers, and K. Lammertsma, J. Phys. Chem. A 108, 5479 (2004). https://doi.org/10.1021/jp049043i

    Article  CAS  Google Scholar 

  23. M. Swart, A. W. Ehlers, and K. Lammertsma, Mol. Phys. 102, 2467 (2004).https://doi.org/10.1080/0026897042000275017

    Article  CAS  Google Scholar 

  24. M. Swart, Inorg. Chim. Acta 360, 179 (2007). https://doi.org/10.1016/j.ica.2006.07.073

    Article  CAS  Google Scholar 

  25. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, H. Li, H. P. Hratchian, A. F. Izmaylov, et al., Gaussian 09, Revision A.01 (Gaussian, Inc., Wallingford CT, 2009).

    Google Scholar 

  26. J. W. Ochterski, Thermochemistry in Gaussian (Gaussian, Inc., Wallingford CT, 2000).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

All quantum-chemical calculations were performed at the Kazan Department of the Interdepartmental Supercomputer Center of the Russian Academy of Sciences (affiliation of the Federal Research Center “Scientific Research Center for System Development,” Russian Academy of Sciences (http://www.jscc.ru)), to which the authors are grateful for technical support.

The work of D.V. Chachkov was funded by the state assignment at the Federal Research Center “Scientific Research Institute of System Analysis of Russian Academy of Sciences.”

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to D. V. Chachkov or O. V. Mikhailov.

Ethics declarations

The authors have no conflicts of interest to declare that are relevant to the contents of this article.

Additional information

Translated by L. Smolina

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chachkov, D.V., Mikhailov, O.V. Molecular Structures of Heteroligand Macrotetracyclic Complexes of 3d Ions with Phthalocyanine and Fluoride Anion Studied by Density Functional Theory. Russ. J. Phys. Chem. 95, 310–316 (2021). https://doi.org/10.1134/S0036024421020072

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024421020072

Keywords:

Navigation