Skip to main content
Log in

On the Modeling of the S-Shaped Thermodynamic and Transport Behavior against the Atomic Number Z of Some Trivalent f-Element Ions in Aqueous Solutions at 298 K and Prediction for Completion of the Periodic Table of Chemical Elements

  • STRUCTURE OF MATTER AND QUANTUM CHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Ionic self-diffusion coefficients D of some trivalent lanthanide and actinide ions have been determined by the open-end capillary method (O.E.C.M.) in supporting lanthanide electrolyte 1 : 3 aqueous solutions at 25°C and optimal pH 2.50 in order to avoid hydrolysis, ion pairing and complexing of trivalent 4f ions. This study contributes to demonstrate similarities in transport and structure properties between 4f and 5f trivalent ions explained by a similar electronic configuration, ionic radius and same hydration number. These similarities are manifested in a strong causal correlation between certain properties by linear or S-shaped behaviors. In this context, we have suggested some expressions relating these properties and interesting to estimate or predict, by interpolation or extrapolation methods, some eventually not available experimental values, especially for the actinides for which the half-life is very short or the experimental conditions are very special and expensive. For this issue, we can contribute to the complement of periodic table of elements by some physicochemical properties, especially for the 5f-series, when we have some available data on the 4f‑series as well as the mathematical function of the causal correlation between these two nf-series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. L. Onsager and S. K. Kim, J. Phys. Chem. 61, 215 (1957).

    Article  CAS  Google Scholar 

  2. R. A. Robinson, and R. H. Stokes, Electrolytes Solutions, 5th ed. (Butterworths, London, 1970).

    Google Scholar 

  3. F. David and B. Fourest, New J. Chem. 21, 167 (1997).

    CAS  Google Scholar 

  4. M. R. Antonio, C. W. Williams, and L. Soderholm, Radiochim. Acta 90, 851 (2002).

    Article  CAS  Google Scholar 

  5. L. Tilkens, K. Randall, J. Sun, M. T. Berry, P. S. May, and T. Yamase, J. Phys. Chem. A 108, 6624 (2004).

    Article  CAS  Google Scholar 

  6. E. Mauerhofer, K. Zhernosekov, and F. Rösch, Radiochim. Acta 91, 473 (2003).

    Article  CAS  Google Scholar 

  7. F. M. Floris and A. Tani, J. Chem. Phys. 115, 4750 (2001).

    Article  CAS  Google Scholar 

  8. J. M’Halla, P. Turq, and M. Chemla, J. Chem. Soc., Faraday Trans. 1 74, 2320 (1978).

    Article  Google Scholar 

  9. P. Turq, M. Chemla, H. Latrous, and J. M’Halla, J. Phys. Chem. 81, 485 (1977).

    Article  CAS  Google Scholar 

  10. J. M’Halla, M. Chemla, R. Bury, and F. David, J. Chem. Phys. 85, 121 (1988).

    Google Scholar 

  11. H. Latrous, J. Oliver, and M. Chemla, Z. Phys. Chem. 202, 195 (1998).

    Google Scholar 

  12. H. Latrous and J. Oliver, J. Radioanal. Nucl. Chem. 156, 291 (1992).

    Article  CAS  Google Scholar 

  13. H. Latrous, M. Ammar, and J. M’Halla, Radiochem. Radioanal. Lett. 53, 33 (1982).

    CAS  Google Scholar 

  14. N. Ouerfelli, M. Ammar, and H. Latrous, J. Chim. Phys. 91, 1795 (1994).

    Article  Google Scholar 

  15. H. Latrous and J. Oliver, J. Mol. Liq. 81, 115 (1999).

    Article  CAS  Google Scholar 

  16. H. Latrous and J. Oliver, J. Radioanal. Nucl. Chem. 156, 291 (1992).

    Article  CAS  Google Scholar 

  17. H. Latrous, J. Olivier, and M. Chemla, Z. Phys. Chem. 159, 195 (1988).

    Article  CAS  Google Scholar 

  18. H. Latrous, R. Besbes, and N. Ouerfelli, J. Mol. Liq. 138, 51 (2008).

    Article  CAS  Google Scholar 

  19. N. Ouerfelli, H. Latrous, and M. Ammar, J. Mol. Liq. 146, 52 (2009).

    Article  CAS  Google Scholar 

  20. R. Besbes, N. Ouerfelli, M. Abderabba, and H. Latrous, IOP Conf. Ser.: Mater. Sci. Eng. 9, 012079 (2010). https://doi.org/10.1088/1757-899X/9/1/012079

  21. N. Ouerfelli, D. Das, H. Latrous, M. Ammar, and J. Oliver, J. Radioanal. Nucl. Chem. 300, 51 (2014).

    Article  CAS  Google Scholar 

  22. R. Besbes, N. Ouerfelli, and H. Latrous, Plutonium Futures - The Science Code 84208 (2010), p. 136.

  23. R. Besbes, N. Ouerfelli, M. Abderabba, P. Lindqvist-Reis, and H. Latrous, Mediterr. J. Chem. 1, 334 (2012).

    Article  CAS  Google Scholar 

  24. N. Ouerfelli and M. Bouanz, J. Phys.: Condens. Matter 8, 2763 (1996).

    CAS  Google Scholar 

  25. P. Lindqvist-Reis, R. Klenze, G. Schubert, and T. Fanghanel, J. Phys. Chem. B 109, 3077 (2005).

    Article  CAS  PubMed  Google Scholar 

  26. J.-F. Dufrêche, O. Bernard, P. Turq, A. Mukherjee, and B. Bagchi, Phys. Rev. Lett. 88, 095902 (2002).

  27. N. Ouerfelli, M. Ammar, and H. Latrous, J. Phys.: Condens. Matter 8, 8173 (1996).

    CAS  Google Scholar 

  28. N. Ouerfelli, A. Mgaidi, H. Latrous, M. Ammar, and M. Abderabba, Phys. Chem. Liq. 50, 222 (2012).

    Article  CAS  Google Scholar 

  29. R. Besbes, N. Ouerfelli, and H. Latrous, J. Mol. Liq. 145, 1 (2009).

    Article  CAS  Google Scholar 

  30. N. Ouerfelli, Z. Barhoumi, and O. Iulian, J. Solution Chem. 41, 458 (2012).

    Article  CAS  Google Scholar 

  31. R. Besbes, N. Ouerfelli, and M. Abderabba, Mediterr. J. Chem. 1, 289 (2012).

    Article  CAS  Google Scholar 

  32. N. Dhouibi, A. Messaâdi, M. Bouaziz, N. Ouerfelli, and A. H. Hamzaoui, Phys. Chem. Liq. 50, 750 (2012).

    Article  CAS  Google Scholar 

  33. M. Bouanz, M. Ammar, and J. M’halla, J. Phase Trans. 32, 215 (1991).

  34. N. Ouerfelli and M. Bouanz, J. Solution Chem. 35, 121 (2006).

    Article  CAS  Google Scholar 

  35. A. Messaâdi, N. Ouerfelli, D. Das, H. Hamda, and A. H. Hamzaoui, J. Solution Chem. 41, 2186 (2012).

  36. D. Das, H. Salhi, M. Dallel, Z. Trabelsi, A. A. Al-Arfaj, and N. Ouerfelli, J. Solution Chem. 44, 54 (2015).

    Article  CAS  Google Scholar 

  37. B. Fourest, J. Duplessis, and F. David, J. Less Common Met. 92, 17 (1983).

    Article  CAS  Google Scholar 

  38. B. Fourest, J. Duplessis, and F. David, Radiochim. Acta 36, 191 (1984).

    Article  CAS  Google Scholar 

  39. F. David, B. Fourest, and J. Duplessis, J. Nucl. Mater. C 130, 273 (1985).

    Article  CAS  Google Scholar 

  40. B. Fourest, J. Duplessis, and F. David, Radiochim. Acta 46, 131 (1989).

    Article  CAS  Google Scholar 

  41. B. Fourest, G. Blain, and F. David, Radiochim. Acta 69, 215 (1995).

    Article  CAS  Google Scholar 

  42. F. H. David and B. Fourest, New J. Chem. 21, 167 (1997).

    CAS  Google Scholar 

  43. F. David, K. Samhoun, R. Guillaumont, and N. Edelstein, J. Inorg. Nucl. Chem. 40, 69 (1978).

    Article  CAS  Google Scholar 

  44. F. David, Pure Appl. Chem. 53, 997 (1981).

    Article  CAS  Google Scholar 

  45. F. David, J. Less Common Met. 121, 27 (1985).

    Article  Google Scholar 

  46. F. H. David and V. Vokhmin, New J. Chem. 27, 1627 (2003).

    Article  CAS  Google Scholar 

  47. G. T. Seaborg, Radiochim. Acta 70–71, 69 (1995).

    Google Scholar 

  48. L. Meyer, Modern Chemical Theories (Maruschke and Behrends, Breslau, 1864).

  49. D. Mendelejeff, Zeitschr. Chem. 12, 405 (1869).

    Google Scholar 

  50. M. D. Mendeleev, C.R. Hebd Seances Acad. Sci. 81, 969 (1875).

    Google Scholar 

  51. R. Guillaumont, C.R. Phys. 20, 617 (2019). https://doi.org/10.1016/j.crhy.2018.12.006

  52. A. A. Andriiko and H.-J. Lunk, ChemTexts 4, 4 (2018). https://doi.org/10.1007/s40828-018-0059-y

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This paper is a contribution to celebrate the International Year of the Periodic Table of Chemical Elements (IYPT2019) and it is dedicated to the memory of the Eminent Russian Chemist, Dmitri Ivanovich Mendeleev (1834–1907) Saint-Petersbourg, Russia. The actinide data are developed in Oak-Ridge, Tennessee USA with Prof. H. Latrous and Prof. J.H. Oliver co-worker of Prof. G.T. Seaborg (Nobel Prize in Chemistry 1951, University of California, Berkeley, USA). For this opportunity, Pr.H. Latrous thanks Dr. R.G. Haire (Oak Ridge National Laboratory Tennessee USA) for fruitful discussions during the experimental determination of transuranium ionic self-diffusion data. The lanthanide data are developed in FST, UTM, Tunisia with Professors N. Ouerfelli, M. Ammar, and H. Latrous under the honorable consultation and helpful discussions and suggestions of Prof. Marius Chemla, Tunisian origin (Univ. Pierre et Marie Curie, Paris VI, France) and Student of Irene and Frederic Joliot-Curie (Nobel Prize in Chemistry 1935).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Ouerfelli.

Ethics declarations

Authors declare that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouerfelli, N., Latrous, H., Oliver, J.H. et al. On the Modeling of the S-Shaped Thermodynamic and Transport Behavior against the Atomic Number Z of Some Trivalent f-Element Ions in Aqueous Solutions at 298 K and Prediction for Completion of the Periodic Table of Chemical Elements. Russ. J. Phys. Chem. 94, 2077–2083 (2020). https://doi.org/10.1134/S0036024420100210

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024420100210

Keywords:

Navigation