Skip to main content
Log in

Reactivity of Aliphatic and Aromatic Nitrocompounds in the Triplet State with Respect to Amines

  • STRUCTURE OF MATTER AND QUANTUM CHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Reactions of photochemical hydrogen transfer are modeled by means of quantum chemistry. Nitromethane and nitrobenzene in the triplet state in combination with ammonia, methylamine, or dimethylamine as hydrogen donors are studied. The structures of reaction complexes of the original materials, the transitional states and reaction products, the activation energies of the reactions, and changes in the standard enthalpies of the reactions are determined. The profiles of the potential energy surfaces of certain reactions are modeled. It is established that all profiles are very smooth, and the activation energies are low. The distribution of electron density in complexes is studied using Bader’s theory of atoms in molecules. All complexes have a characteristic ring structure that can be considered a source of additional interaction during a reaction. It is suggested that such a structure is responsible for the low activation energies of the reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. W. Trotter and A. C. Testa, J. Am. Chem. Soc. 90, 7044 (1968).

    Article  CAS  Google Scholar 

  2. D. Rehorek and E. G. Janzen, J. Photochem. 35, 251 (1986).

    Article  CAS  Google Scholar 

  3. K. Sundararajan, V. Ramakrishnan, and J. C. Kuriacose, J. Photochem. 27, 61 (1984).

    Article  CAS  Google Scholar 

  4. H. Ohtani et al., Bull. Chem. Soc. Jpn. 53, 43 (1980).

    Article  CAS  Google Scholar 

  5. R. Hurley and A. C. Testa, J. Am. Chem. Soc. 90, 1949 (1968).

    Article  CAS  Google Scholar 

  6. A. Giussani and G. A. Worth, J. Chem. Theory Comput. 13, 2777 (2017).

    Article  CAS  Google Scholar 

  7. J. F. Arenas et al., Org. Chem. 71, 983 (2006).

    Article  CAS  Google Scholar 

  8. A. Costela et al., J. Photochem. Photobiol., A 109, 77 (1997).

    Article  CAS  Google Scholar 

  9. A. Costela et al., J. Polym. Sci., Part A 35, 3801 (1997).

    Article  CAS  Google Scholar 

  10. S. V. Zelentsov et al., High Energy Chem. 38, 115 (2004).

    Article  CAS  Google Scholar 

  11. S. V. Zelentsov, I. V. Simdyanov, and M. V. Kuznetsov, High Energy Chem. 39, 309 (2005).

    Article  CAS  Google Scholar 

  12. H. Görner, J. Chem. Soc. Perkin Trans. II, No. 10, 1778 (2002).

    Article  Google Scholar 

  13. H. Görner, J. Photochem. Photobiol., A 195, 235 (2008).

    Article  Google Scholar 

  14. L. Biczók and H. Görner, Chem. Phys. 392, 10 (2012).

    Article  Google Scholar 

  15. F. M. Abd El Latif et al., J. Photochem. Photobiol., A 121, 111 (1999).

    Article  CAS  Google Scholar 

  16. M. Valiev et al., Comput. Phys. Commun. 181, 1477 (2010).

    Article  CAS  Google Scholar 

  17. R. M. Parrish, et al., J. Chem. Theory Comput. 13, 3185 (2017).

    Article  CAS  Google Scholar 

  18. L. Schrödinger, Pymol. www.pymol.org. Accessed 2015.

  19. T. Lu and F. Chen, J. Comput. Chem. 33, 580 (2012).

    Article  Google Scholar 

  20. D. V. Ovsyannikov and S. V. Zelentsov, High Energy Chem. 53, 95 (2019).

    Article  Google Scholar 

  21. A. Diamanti et al., Ind. Eng. Chem. Res. 56, 815 (2017).

    Article  CAS  Google Scholar 

  22. J.-F. Joly and R. E. Miller, Ind. Eng. Chem. Res. 57, 876 (2018).

    Article  CAS  Google Scholar 

  23. Y. Kobayashi, M. Kamiya, and K. Hirao, Chem. Phys. Lett. 319, 695 (2000).

    Article  CAS  Google Scholar 

  24. B. J. Lynch and D. G. Truhlar, J. Phys. Chem. A 105, 2936 (2001).

    Article  CAS  Google Scholar 

  25. B. S. Jursic, THEOCHEM 428, 49 (1998).

    Article  CAS  Google Scholar 

  26. R. F. W. Bader, Atoms in Molecules: A Quantum Theory, Int. Series of Monographs on Chemistry (Oxford Univ. Press, Oxford, New York, 1994).

    Google Scholar 

  27. Lobachevsky Supercomputer. http://hpc-education.unn.ru/en/resources.

Download references

ACKNOWLEDGMENTS

Numerical modeling was done on the Lobachevsky supercomputer at the University of Nizhny Novgorod. We used up to 45 computational nodes with the configuration 2x Intel Xeon E5-2660 CPU (8 cores, 2.2 GHz), 64 GB RAM [27].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. V. Ovsyannikov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ovsyannikov, D.V., Zelentsov, S.V. Reactivity of Aliphatic and Aromatic Nitrocompounds in the Triplet State with Respect to Amines. Russ. J. Phys. Chem. 94, 1603–1606 (2020). https://doi.org/10.1134/S0036024420080221

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024420080221

Navigation