Skip to main content
Log in

Modeling the IR Spectra of Excited Quadrupole Molecules with Broken Symmetry in Polar Solvents

  • STRUCTURE OF MATTER AND QUANTUM CHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

An approach is developed that allows estimation of excited quadrupole molecule parameters responsible for changes in vibration frequencies in states with symmetry breaking by charge transfer from time-resolved IR spectra. The approach is tested on a molecule like A-π-D-π-A composed of an electron-accepting group A coupled with electron-donating group D by means of π-conjugated bonds, a D pyrrolopyrrole core, and two cyanophenyl acceptors. The expression derived for the IR spectrum of a molecule with symmetry breaking is shown to perfectly describe experimental data. The numerical values of the parameters of asymmetry in a series of solvents with different polarities and the solvent-independent parameters of the molecule itself are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Scheme 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. C. le Droumaguet, O. Mongin, M. H. V. Werts, and M. Blanchard-Desce, Chem. Commun., 2802 (2005). https://doi.org/10.1039/B502585K

  2. N. Mataga, H. Yao, T. Okado, and W. Retting, J. Phys. Chem. 93, 3383 (1989). https://doi.org/10.1021/j100346a004

    Article  CAS  Google Scholar 

  3. J. J. Piet, W. Schuddeboom, B. R. Wegewijs, et al., J. Am. Chem. Soc. 123, 5337 (2001). https://doi.org/10.1021/ja004341o

    Article  CAS  PubMed  Google Scholar 

  4. W. Beljonne, E. Wenseleers, Z. Zojer, et al., Adv. Funct. Mater. 12, 631 (2002). https://doi.org/10.1002/1616-3028(20020916)12:9<631::AID-ADFM631>3.0.CO;2-W

    Article  CAS  Google Scholar 

  5. A. Kovalenko, J. L. P. Lustres, N. P. Ernsting, and W. Rettig, J. Phys. Chem. A 107, 10228 (2003). https://doi.org/10.1021/jp026802t

    Article  CAS  Google Scholar 

  6. D. Lewis, P. Daublain, L. Zhang, et al., J. Phys. Chem. B 112, 3838 (2008). https://doi.org/10.1021/jp710718p

    Article  CAS  PubMed  Google Scholar 

  7. S. Bhosale, A. L. Sisson, P. Talukdar, et al., Science (Washington, DC, U. S.) 313, 84 (2006). https://doi.org/10.1126/science.1126524

    Article  CAS  Google Scholar 

  8. N. Banerji, A. Furstenberg, S. Bhosale, et al., J. Phys. Chem. B 112, 8912 (2008). https://doi.org/10.1021/jp801276p

    Article  CAS  PubMed  Google Scholar 

  9. N. Banerji, G. Duvanel, A. Perez-Velasco, et al., J. Phys. Chem. A 113, 8202 (2009). https://doi.org/10.1021/jp903572r

    Article  CAS  PubMed  Google Scholar 

  10. J. M. Giaimo, A. V. Gusev, and M. R. Wasielewski, J. Am. Chem. Soc. 124, 8530 (2002). https://doi.org/10.1021/ja026422l

    Article  CAS  PubMed  Google Scholar 

  11. M. W. Holman, P. Yan, D. M. Adams, et al., J. Phys. Chem. A 109, 8548 (2005). https://doi.org/10.1021/jp0502050

    Article  CAS  PubMed  Google Scholar 

  12. H. Hu, O. V. Przhonska, F. Terenziani, et al., Phys. Chem. Chem. Phys. 15, 7666 (2013). https://doi.org/10.1039/C3CP50811K

    Article  CAS  PubMed  Google Scholar 

  13. C. Sissa, F. Delchiaro, F. D. Maiolo, et al., J. Chem. Phys. 141, 164317 (2014). https://doi.org/10.1063/1.4898710

    Article  CAS  PubMed  Google Scholar 

  14. A. Rebane, M. Drobizhev, N. S. Makarov, et al., J. Phys. Chem. A 118, 3749 (2014). https://doi.org/10.1021/jp5009658

    Article  CAS  PubMed  Google Scholar 

  15. C. Trinh, K. Kirlikovali, S. Das, et al., J. Phys. Chem. C 118, 21834 (2014). https://doi.org/10.1021/jp506855t

    Article  CAS  Google Scholar 

  16. B. Carlotti, E. Benassi, A. Spalletti, et al., Phys. Chem. Chem. Phys. 16, 13984 (2014). https://doi.org/10.1039/C4CP00631C

    Article  CAS  PubMed  Google Scholar 

  17. B. Carlotti, E. Benassi, C. G. Fortuna, et al., Chem. Phys. Chem. 17, 136 (2016). https://doi.org/10.1002/cphc.201500784

    Article  CAS  PubMed  Google Scholar 

  18. B. Dereka, A. Rosspeintner, Z. Li, et al., J. Am. Chem. Soc. 138, 4643 (2016). https://doi.org/10.1021/jacs.6b01362

    Article  CAS  PubMed  Google Scholar 

  19. B. Dereka, A. Rosspeintner, M. Krzeszewski, et al., Angew. Chem., Int. Ed. 55, 15624 (2016). https://doi.org/10.1002/anie.201608567

    Article  CAS  Google Scholar 

  20. B. Dereka, A. Rosspeintner, R. Stezycki, et al., J. Phys. Chem. Lett. 8, 6029 (2017). https://doi.org/10.1021/acs.jpclett.7b02944

    Article  CAS  PubMed  Google Scholar 

  21. B. Dereka and E. Vauthey, J. Phys. Chem. Lett. 8, 3927 (2017). https://doi.org/10.1021/acs.jpclett.7b01821

    Article  CAS  PubMed  Google Scholar 

  22. F. Terenziani, A. Painelli, C. Katan, et al., J. Am. Chem. Soc. 128, 15742 (2006). https://doi.org/10.1021/ja064521j

    Article  CAS  PubMed  Google Scholar 

  23. A. I. Ivanov, B. Dereka, and E. Vauthey, J. Chem. Phys. 146, 164306 (2017). https://doi.org/10.1063/1.4982067

    Article  CAS  PubMed  Google Scholar 

  24. A. I. Ivanov and V. G. Tkachev, J. Chem. Phys. 151, 124309 (2019). https://doi.org/10.1063/1.5116015

    Article  CAS  PubMed  Google Scholar 

  25. A. I. Ivanov, J. Phys. Chem. C 122, 29165 (2018). https://doi.org/10.1021/acs.jpcc.8b10985

    Article  CAS  Google Scholar 

  26. F. Colobert and J. Wencel-Delord, C-H Activation for Asymmetric Synthesis (Wiley-VCH, Weinheim, 2019).

    Book  Google Scholar 

  27. H. Pellissier, Asymmetric Metal Catalysis in Enantioselective Domino Reactions (Wiley-VCH, Weinheim, 2019).

    Book  Google Scholar 

  28. L. Onsager, J. Am. Chem. Soc. 58, 1486 (1936). https://doi.org/10.1021/ja01299a050

    Article  CAS  Google Scholar 

  29. B. Dereka, J. Helbing, and E. Vauthey, Angew. Chem., Int. Ed. 57, 17014 (2018). https://doi.org/10.1002/anie.201808324

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to Professor Eric Vauthey of the University of Geneva for providing the experimental data presented in Figs. 2 and 3.

Funding

This work was supported by the Russian Foundation for Basic Research and the Administration of the Volgograd oblast as part of scientific project no. 19-43-340003r_a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Ivanov.

Additional information

Translated by E. Glushachenkova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazarov, A.E., Ivanov, A.I. Modeling the IR Spectra of Excited Quadrupole Molecules with Broken Symmetry in Polar Solvents. Russ. J. Phys. Chem. 94, 1607–1615 (2020). https://doi.org/10.1134/S003602442008021X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003602442008021X

Keywords:

Navigation