Skip to main content
Log in

СО2 Adsorbents Deposited on Silicon Carbide

  • PHYSICAL CHEMISTRY OF SURFACE PHENOMENA
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Adsorbents for the absorption of CO2 (Li2ZrO3, Li4SiO4, CaSiO3, MgO, and Li2O) are synthesized and deposited on silicon carbide. The adsorbents are effective in the range of medium (300–400°C) and high (450–750°C) temperatures, have a high capacity for the dynamic absorption of CO2, and an enhanced rate of absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. S. Kumar and S. K. Saxena, Mater. Renew. Sustain. Energy 3, 30 (2014).https://doi.org/10.1007/s40243-014-0030-9

    Article  CAS  Google Scholar 

  2. M. J. Ramírez-Moreno, I. C. Romero-Ibarra, J. Ortiz-Landeros, and H. Pfeiffer, Alkaline and Alkaline-Earth Ceramic Oxides for CO2 Capture, Separation, and Subsequent Catalytic Chemical Conversion. https://doi.org/10.5772/57444

  3. E. Ochoa-Fernández, M. Ronning, T. Grande, and D. Chen, Chem. Mater. 18, 1383 (2006).https://doi.org/10.1021/cm052075d

    Article  CAS  Google Scholar 

  4. Q. Xiao, X. Tang, Y. Liu, et al., Front. Chem. Sci. Eng. 7, 297 (2013).https://doi.org/10.1007/s11705-013-1346-1

    Article  CAS  Google Scholar 

  5. H. R. Radfarnia, High-Temperature CO2Sorbents and Application in the Sorption Enhanced Steam Reforming for Hydrogen Production (Univ. LAVAL, Quebec, Canada, 2013), p. 70.

    Google Scholar 

  6. K. B. Yi and D. O. Eriksen, Separ. Sci. Technol. 41, 283 (2006). https://doi.org/10.1080/01496390500496884

    Article  CAS  Google Scholar 

  7. Xiao Q, Y. Liu, Y. Zhong, and W. Zhu, J. Mater. Chem. 41, 3838 (2011). https://doi.org/10.1039/C0JM03243C

    Article  Google Scholar 

  8. M. J. Venegas, E. Fregoso-Israel, R. Eskamilla, and H. Pfeiffer, Ing. Eng. Chem. Res. 41, 2407 (2007).https://doi.org/10.1021/ie061259e

    Article  CAS  Google Scholar 

  9. M. Kato, K. Nakagawa, K. Essaki, et al., Int. J. Appl. Ceram. Technol. 2, 467 (2005). https://doi.org/10.1111/j.1744-7402.2005.02047.x

    Article  CAS  Google Scholar 

  10. B. K. Kishor, Y. R. Reshma, H. R. Vilash, and G. G. Abaji, Adsorpt. Sci. Technol. 30, 817 (2012).

    Article  Google Scholar 

  11. A. Hassanzadeh and J. Abbasian, Fuel 89, 1287 (2010). https://doi.org/10.1016/j.fuel.2009.11.017

    Article  CAS  Google Scholar 

  12. J. Fagerlund, J. Highfield, and R. Zevenhoven, RSC Adv. 2, 10380 (2012). https://doi.org/10.1039/C2RA21428H

  13. Y. Duan and D. C. Sorescu, Phys. Rev. B 79, 014301 (2009). https://doi.org/10.1103/PhysRevB.79.014301

    Article  CAS  Google Scholar 

  14. G. K. Lavrenchenko, A. V. Kopytin, A. I. Pyatnichko, and Yu. V. Ivanov, Tekh. Gazy, No. 1, 31 (2011).

    Google Scholar 

  15. M. Xiao, H. Liu, H. Gao, and Z. Liang, J. Chem. Thermodyn. 122, 170 (2018).https://doi.org/10.1016/j.jct.2018.03.020

    Article  CAS  Google Scholar 

  16. P. Lang, F. Denes, and L. Hegely, Chem. Eng. Trans. 61, 1105 (2017). https://doi.org/10.3303/CET1761182

    Article  Google Scholar 

  17. A. V. Ignatov, A. L. Tarasov, L. M. Kustov, and I. S. Portyakova, RF Patent No. 2659256, Byull. Izobret., No. 16 (2018).

  18. E. A. Denisova, Ya. B. Baklanova, and L. G. Maksimova, RF Patent No. 2440298, Byull. Izobret., No. 2 (2012).

  19. Q. Xiao, Y. Liu, Y. Zhong, and W. Zhu, J. Mater. Chem. 21, 3838 (2011). https://doi.org/10.1039/C0JM03243C

    Article  CAS  Google Scholar 

  20. V. V. Kachala, L. L. Khemchyan, A. S. Kashin, N. V. Orlov, A. A. Grachev, S. S. Zalesskiy, and V. P. Ananikov, Russ. Chem. Rev. 82, 648 (2013). https://doi.org/10.1070/RC2013v082n07ABEH004413

    Article  CAS  Google Scholar 

  21. K. Nakagawa and T. Ohashi, J. Electrochem. Soc. 145, 1344 (1998). https://doi.org/10.1149/1.1838462

    Article  CAS  Google Scholar 

  22. K. Nakagawa and T. Ohashi, Electrochem. 67, 618 (1999).

    Article  CAS  Google Scholar 

  23. J. Ida, R. Xiong, and Y. S. Lin, Sep. Rurif. Technol. 36, 41 (2004).https://doi.org/10.1016/S1383-5866(03)00151-5

    Article  CAS  Google Scholar 

  24. B. N. Nair, T. Yamaguchi, H. Kawamura, et al., J. Am. Ceram. Soc. 87, 68 (2008). https://doi.org/10.1111/j.1551-2916.2004.00068.x

    Article  Google Scholar 

  25. E. Ochoa-Fernandes, M. Ronning, T. Grande, and D. Chen, Chem. Mater. 18, 6037 (2006). https://doi.org/10.1021/cm061515d

    Article  CAS  Google Scholar 

  26. Q. Xiao, X. Tang, Y. Liu, et al., Chem. Eng. J. 174, 231 (2011).

    Article  CAS  Google Scholar 

  27. C. Wang, Dou B, Y. Song, et al., Ind. Eng. Chem. Res. 53, 12744 (2014).https://doi.org/10.1021/ie502042p

    Article  CAS  Google Scholar 

  28. G. Pannocchia, M. Puccini, M. Seggiani, and S. Vitolo, Ind. Eng. Chem. Res. 46, 6696 (2007).https://doi.org/10.1021/ie0616949

    Article  CAS  Google Scholar 

  29. M. Y. Veliz-Enriquez, G. Gonzalez, and H. Pfeiffer, J. Solid State Chem. 180, 2485 (2007). https://doi.org/10.1016/j.jssc.2007.06.023

    Article  CAS  Google Scholar 

  30. J. Ida and Y. S. Lin, Environ. Sci. Technol. 37, 1999 (2003). https://doi.org/10.1021/es0259032

    Article  CAS  PubMed  Google Scholar 

  31. M. Khokhani, R. Khomane, and B. D. Kulkarni, J. Sol-Gel Sci. Technol. 61, 316 (2012). https://doi.org/10.1007/s10971-011-2629-y

    Article  CAS  Google Scholar 

  32. R. B. Khomane, B. K. Sharma, S. Saha, and B. D. Kulkarni, Chem. Eng. Sci. 61, 3415 (2006).

    Article  CAS  Google Scholar 

  33. X. Wu, Z. Wen, X. Xu, X. Wang, and J. Lin, J. Nucl. Mater. 392, 471 (2009). https://doi.org/10.1016/j.jnucmat.2009.04.010

    Article  CAS  Google Scholar 

  34. M. J. Venegas, E. Fregoso-Israel, R. Escamilla, and H. Pfeiffer, Ind. Eng. Chem. Res. 46, 2407 (2007). https://doi.org/10.1021/ie061259e

    Article  CAS  Google Scholar 

  35. H. Xu, W. Cheng, X. Jin, et al., Ind. Eng. Chem. Res. 52, 1886 (2013). https://doi.org/10.1021/ie301178p

    Article  CAS  Google Scholar 

  36. C. Gauer and W. Heschel, J. Mater. Sci. 41, 2405 (2006).

    Article  CAS  Google Scholar 

  37. P. V. Korake and A. G. Gaikwad, Front. Chem. Sci. Eng. 5, 215 (2011). https://doi.org/10.1007/s11705-010-1012-9

    Article  CAS  Google Scholar 

  38. M. Wang and C. G. Lee, Energy Convers. Manage. 50, 636 (2009). https://doi.org/10.1016/j.enconman.2008.10.006

  39. H. A. Mosqueda, C. Vazquez, P. Bosch, and H. Pfeiffer, Chem. Mater. 18, 2307 (2006). https://doi.org/10.1021/cm060122b

    Article  CAS  Google Scholar 

  40. S. C. Lee, B. Y. Choi, T. J. Lee, and C. K. Ryu, Catal. Today 111, 385 (2006). https://doi.org/10.1016/j.cattod.2005.10.051

    Article  CAS  Google Scholar 

  41. S. V. Churakov, M. Ianuzzi, and M. Parrinello, J. Phys. Chem. B 108, 11567 (2004). https://doi.org/10.1021/jp037935x

    Article  CAS  Google Scholar 

  42. X. Zhao, G. Ji, W. Liu, et al., Chem. Eng. J. 332, 216 (2018). https://doi.org/10.1016/j.cej.2017.09.068

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to I. V. Mishin or L. M. Kustov.

Additional information

Translated by D. Kharitonov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Portyakova, I.S., Antipov, A.V., Mishin, I.V. et al. СО2 Adsorbents Deposited on Silicon Carbide. Russ. J. Phys. Chem. 94, 1482–1489 (2020). https://doi.org/10.1134/S0036024420070237

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024420070237

Keywords:

Navigation