Skip to main content
Log in

Theoretical Vibrational Spectra of Reaction Intermediates in the Active Site of Guanosine Triphosphate Binding Proteins

  • PROCEEDINGS OF THE CONFERENCE “PHYSICAL CHEMISTRY IN RUSSIA AND BEYOND: FROM QUANTUM CHEMISTRY TO EXPERIMENT” (CHERNOGOLOVKA)
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Calculations of the structures and energies of intermediates of the enzymatic hydrolysis of guanosine triphosphate, performed by means of quantum mechanics and molecular mechanics (QM/MM), suggest a mechanism for chemical transformations of reaction particles in an active site that assumes an amide-imide tautomerism of the side chain of glutamine residue. Positions of vibrational bands and a corresponding band shift upon isotopic substitution 14N → 15N in the side chain of glutamine residue in the active site are predicted for experimental verification of the given mechanism via IR spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. A. Warshel and M. Levitt, J. Mol. Biol. 103, 227 (1976). https://doi.org/10.1016/0022-2836(76)90311-9

    Article  CAS  PubMed  Google Scholar 

  2. A. V. Nemukhin, B. L. Grigorenko, S. V. Lushchekina, et al., Russ. Chem. Rev. 81, 1011 (2012). https://doi.org/10.1070/RC2012v081n11ABEH004311

    Article  CAS  Google Scholar 

  3. E. D. Kots, M. G. Khrenova, A. V. Nemukhin, et al., Russ. Chem. Rev. 88, 1 (2019). https://doi.org/10.1070/RCR4842

    Article  CAS  Google Scholar 

  4. A. K. Mishra and D. G. Lambright, Biopolymers 105, 431 (2016). https://doi.org/10.1002/bip.22833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. A. T. P. Carvalho, K. Szeler, K. Vavitsas, et al., Arch. Biochem. Biophys. 582, 80 (2015). https://doi.org/10.1016/j.abb.2015.02.027

    Article  CAS  PubMed  Google Scholar 

  6. B. L. Grigorenko, E. D. Kots, and A. V. Nemukhin, Org. Biomol. Chem. 17, 4879 (2019). https://doi.org/10.1039/C9OB00463G

    Article  CAS  PubMed  Google Scholar 

  7. M. G. Khrenova, B. L. Grigorenko, A. B. Kolomeisky, and A. V. Nemukhin, J. Phys. Chem. B 119, 12838 (2015). https://doi.org/10.1021/acs/jpcb.5b07238

    Article  CAS  PubMed  Google Scholar 

  8. B. L. Grigorenko, M. G. Khrenova, and A. V. Nemukhin, Phys. Chem. Chem. Phys. 20, 23827 (2018). https://doi.org/10.1039/c8cp04817g

    Article  CAS  PubMed  Google Scholar 

  9. C. Kötting and K. Gerwert, Biol. Chem. 396, 131 (2015). https://doi.org/10.1515/hsz-2014-0219

    Article  CAS  PubMed  Google Scholar 

  10. M. G. Khrenova, B. L. Grigorenko, and A. V. Nemukhin, Spectrochim. Acta, Part A 166, 68 (2016). https://doi.org/10.1016/j.saa.2016.04.056

    Article  CAS  Google Scholar 

  11. T. Domratcheva, B. L. Grigorenko, I. Schlichting, and A. V. Nemukhin, Biophys. J. 94, 3872 (2008). https://doi.org/10.1529/biophysj.107.124172

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. T. Domratcheva, E. Hartmann, I. Schlichting, and T. Kottke, Sci. Rep. 6, 22669 (2016). https://doi.org/10.1038/srep22669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. A. K. Scheffzek, M. R. Ahmadian, W. Kabsch, et al., Science (Washington, D.C., U. S.) 277, 333 (1997). https://doi.org/10.1126/science.277.5324.333

    Article  CAS  Google Scholar 

  14. C. Adamo and V. Barone, J. Chem. Phys. 110, 6158 (1999). https://doi.org/10.1063/1.478522

    Article  CAS  Google Scholar 

  15. S. Grimme, J. Antony, S. Ehrlich, et al., J. Chem. Phys. 132, 154104 (2010). https://doi.org/10.1063/1.3382344

    Article  CAS  Google Scholar 

  16. W. D. Cornell, P. Cieplak, C. I. Bayly, et al., J. Am. Chem. Soc. 117, 5179 (1995). https://doi.org/10.1021/ja00124a002

    Article  CAS  Google Scholar 

  17. M. Valiev, E. J. Bylaska, N. Govind, et al., Comput. Phys. Commun. 181, 1477 (2010). https://doi.org/10.1016/j.cpc.2010.04.018

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Scientific Foundation, project no. 19-73-20032. The calculations were performed on the equipment of the shared resource center of Moscow State University’s high-performance computing resources and the Russian Academy of Sciences’ Joint Supercomputer Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Nemukhin.

Additional information

Translated by K. Gumerov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grigorenko, B.L., Nemukhin, A.V. Theoretical Vibrational Spectra of Reaction Intermediates in the Active Site of Guanosine Triphosphate Binding Proteins. Russ. J. Phys. Chem. 94, 914–918 (2020). https://doi.org/10.1134/S0036024420050088

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024420050088

Keywords:

Navigation