Skip to main content
Log in

Synthesis, Structural Characterization, Spectroscopic Properties, and Theoretical Investigation of Siderol Acetate

  • STRUCTURE OF MATTER AND QUANTUM CHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

In the present study, siderol acetate (1) was synthesized from siderol isolated from endemic Sideritis species, then its chemical structure was determined by using various spectroscopic methods (FT-IR, 1H NMR, and 13C NMR). The geometrical parameters, vibrational frequencies and gauge including atomic orbital (GIAO) 1H and 13C NMR chemical shift values for siderol acetate in the ground state have been calculated using the Density Functional Theory (DFT) and Hartree–Fock (HF) methods with the 6-31G(d) basis set. The calculated vibrational frequencies and 1H and 13C NMR chemical shifts have been compared with experimental values. A combined study based on NMR data and quantum-mechanical calculations using DFT/GIAO indicate that 1 is the correct structure of the title molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. I. Aslan, T. Kılıç, A. C. Gören, and G. Topçu, Ind. Crops Products 23, 171 (2006).

    Article  CAS  Google Scholar 

  2. E. González-Burgos, M. E. Carretero, and M. P. Gómez-Serranillos, J. Ethnopharmacol. 135, 209 (2011).

    Article  Google Scholar 

  3. A. Güvenç, Y. Okada, E. Küpeli Akkol, H. Duman, T. Okuyama, and I. Çalıs, Food Chem. 118, 686 (2010).

    Article  Google Scholar 

  4. A. Azizoglu, Z. Özer, and T. Kılıç, Collect. Czech. Chem. Comm. 76, 95 (2011).

    Article  CAS  Google Scholar 

  5. T. Wang and X. Wang, Spectrosc. Chim. Acta A 135, 568 (2015).

    Article  CAS  Google Scholar 

  6. J. Toušek, S. van Miert, L. Pieters, G. van Baelen, S. Hostyn, B. U. Maes, G. Lemiere, R. Dommisse, and R. Marek, Magn. Reson. Chem. 46, 42 (2008).

    Article  Google Scholar 

  7. O. García-Beltrán, J. Soto-Delgado, P. Iturriaga-Vásquez, C. Areche, and B. K. Cassels, J. Chil. Chem. Soc. 57, 1323 (2012).

    Article  Google Scholar 

  8. L. Gong, W. Fang, F. Liu, X. Shan, L. Sheng, and Z. Wang, J. Electron Spectrosc. Relat. Phenom. 182, 134 (2010).

    Article  CAS  Google Scholar 

  9. M. T. Bilkan, Russ. J. Phys. Chem. A 92, 1920 (2018).

    Article  Google Scholar 

  10. T. S. Vishkaee and R. Fazaeli, Russ. J. Phys. Chem. A 92, 1219 (2018).

    Article  Google Scholar 

  11. S. A. Miresmaeili and R. Ghiasi, Russ. J. Phys. Chem. 91, 1026 (2017).

    Article  CAS  Google Scholar 

  12. Z. O. Sagir, S. Carikci, T. Kılıç, and A. C. Goren, Int. J. Food Prop. 20, 2994 (2017).

    Article  CAS  Google Scholar 

  13. B. M. Fraga, Phytochem. 76, 7 (2012).

    Article  CAS  Google Scholar 

  14. G. Topçu, A. Ertas, M. Öztürk, D. Dincel, T. Kılıç, and B. Halfon, Phytochem. Letters 4, 436 (2011).

    Article  Google Scholar 

  15. S. Çarıkçı, Ç. Çöl, T. Kılıç, and A. Azizoglu, Rec. Nat. Prod. 1, 44 (2007).

    Google Scholar 

  16. M. Bruno, F. Piozzi, N. A. Arnold, K. H. C. Başer, N. Tabanca, and N. Kirimer, Turk. J. Chem. 29, 61 (2005).

    CAS  Google Scholar 

  17. A. Venditti, A. Bianco, F. Maggi, and M. Nicoletti, Rec. Nat. Prod. 27, 1408 (2013).

    Article  CAS  Google Scholar 

  18. T. Kılıç, Molecules 11, 257 (2006).

    Article  Google Scholar 

  19. M. J. Frisch et al., Gaussian 09, Revision A02 (Gaussian Inc., Pittsburgh, PA, 2009).

    Google Scholar 

  20. V. Barone, M. Cossi, and J. Tomasi, J. Comp. Chem. 19, 404 (1998).

    Article  CAS  Google Scholar 

  21. I. B. Davydova, S. A. Sharapova, G. M. Kuramshina, and Y. A. Pentin, Russ. J. Phys. Chem. A 89, 1843 (2015).

    Article  CAS  Google Scholar 

  22. S. Cıtak, Z. Ozer Sagır, S. Carıkcı, T. Kılıç, and A. Azizoglu, Rev. Roum. Chim. 59, 227 (2014).

    Google Scholar 

  23. G. K. Pierens, J. Comp. Chem. 35, 1388 (2014).

    Article  CAS  Google Scholar 

  24. I. Fleming, Frontier Orbitals and Organic Chemical Reactions (Oxford Univ. Press, Oxford, 2010).

    Book  Google Scholar 

  25. L. Găină, I. Torje, E. Gal, A. Lupan, C. Bischin, R. Silaghi-Dumitrescu, G. Damian, P. Lönnecke, C. Cristea, and L. Silaghi-Dumitrescu, Dyes Pigm. 102, 315 (2014).

    Article  Google Scholar 

  26. V. Bucila, M. Stefu, and B. Szefler, Studia UBB Chem. 58, 101 (2013).

    CAS  Google Scholar 

  27. V. L. Furer, A. E. Vandyukov, V. Tripathi, J. P. Majoral, A. M. Caminade, and V. I. Kovalenko, J. Mol. Struct. 1162, 1 (2018).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was partially supported by University of Balikesir, research grant no. 2017/159.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Züleyha Özer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Züleyha Özer, Kılıç, T., Çarıkçı, S. et al. Synthesis, Structural Characterization, Spectroscopic Properties, and Theoretical Investigation of Siderol Acetate. Russ. J. Phys. Chem. 93, 2703–2709 (2019). https://doi.org/10.1134/S0036024419130235

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024419130235

Keywords:

Navigation