Skip to main content
Log in

Model of a Reversed Phase Grafted on Silica Gel

  • PHYSICAL CHEMISTRY OF SEPARATION PROCESSES. CHROMATOGRAPHY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

A model is proposed for the surface structure of reversed phase sorbents obtained via the chemical modification of silica gel with alkyldimethylchlorosilanes. The structure of the surface is consistent with the known data on the properties of silica gel and n-alkanes. The model notes that the coupling of silicon-oxygen tetrahedra (silica gel structural units) is such that the tetrahedra alternate in the order top up/top down. At the same time, the number of surface silanol groups on the model’s surface, which can be obtained for the orthorhombic structure of cristobalite, is close to the experimental value (slightly less than five groups per nm2). By comparing the parameters of such a surface and those of alkane packing in the solid phase, it is concluded that all surface silanol groups can be subjected to derivatization according to a hydride scheme. However, due to steric reasons (the presence of two methyl groups in the anchor group), only half the surface groups can be replaced upon silylating the surface of silica gel with alkyldimethylchlorosilane. At the same time, alkyl groups of sorbates or planar molecules can easily be introduced into the graft phase with no need for the conformational rearrangement of grafted alkyl radicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. J. G. Dorsey and K. A. Dill, Chem. Rev. 89, 331 (1989). https://doi.org/10.1021/cr00092a005

    Article  CAS  Google Scholar 

  2. J. J. Kirkland, J. Chromatorg. Sci. 34, 309 (1996).

    CAS  Google Scholar 

  3. J. J. Kirkland, J. B. Jr. Adams, M. A. van Straten, et al., Anal. Chem. 70, 4344 (1998).

    Article  CAS  Google Scholar 

  4. G. P. O’Sullivan, N. M. Scully, and J. D. Glennon, Anal. Lett. 43, 1609 (2010).

    Article  Google Scholar 

  5. K. Okusa, Y. Iwasaki, I. Kuroda, et al., J. Chromatorg. A 1339, 86 (2014).

    Article  CAS  Google Scholar 

  6. H. Wang, L. Chen, X. Tang, et al., J. Chromatorg. A 1271, 153 (2013).

    Article  CAS  Google Scholar 

  7. C. Giaginis and A. Tsantili-Kakoulidou, J. Liq. Chromatogr. Rel. Technol. 31, 79 (2008).

    Article  CAS  Google Scholar 

  8. V. I. Deineka, L. A. Deineka, I. P. Blinova, et al., Sorbtsion. Khromatogr. Protsessy 16, 377 (2016).

    CAS  Google Scholar 

  9. Chemistry of Grafted Surface Compounds, Ed. by G. V. Lisichkin (Fizmatlit, Moscow, 2003) [in Russian].

    Google Scholar 

  10. L. T. Zhuravlev, Langmuir 3, 316 (1987).

    Article  CAS  Google Scholar 

  11. A. G. Clem and R. W. Doehler, Clays Clay Minerals 10, 272 (1961).

    Article  Google Scholar 

  12. E. Lesellier, C. West, and A. Tchapla, J. Chromatogr. A 1111, 62 (2006).

    Article  CAS  Google Scholar 

  13. A. Takada, K. J. Glaser, R. G. Bell, et al., Int. Union Crystallogr. J. 5, 325 (2018).

    Article  CAS  Google Scholar 

  14. M. T. Dove, D. A. Keen, A. C. Hannon, et al., Phys. Chem. Miner. 24, 311 (1997).

    Article  CAS  Google Scholar 

  15. T. Hanai, J. Chromatogr. A 1027, 279 (2004).

    Article  CAS  Google Scholar 

  16. N. Wentzel and S. T. Milner, J. Chem. Phys. 132, 044901 (2010).

    Article  Google Scholar 

  17. J. J. Pesek, R. I. Boysen, M. T. W. Hearn, et al., Anal. Methods 6, 4496 (2014).

    Article  CAS  Google Scholar 

  18. B. Buszewski, Z. Suprunowicz, P. Staszczuk, et al., J. Chromatogr. 499, 305 (1990).

    Article  CAS  Google Scholar 

  19. A. V. Nguyen, V. Deineka, L. Deineka, et al., Separations 4, 37 (2017).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Deineka.

Additional information

Translated by V. Avdeeva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deineka, V.I., Nguyen, A.V. & Deineka, L.A. Model of a Reversed Phase Grafted on Silica Gel. Russ. J. Phys. Chem. 93, 2490–2493 (2019). https://doi.org/10.1134/S0036024419120057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024419120057

Keywords:

Navigation