Skip to main content
Log in

Ethane Oxidation in the Presence of Copper-Containing Zirconia Modified with Acid Additives

  • CHEMICAL KINETICS AND CATALYSIS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The complete oxidation of ethane in the presence of catalysts containing 1, 3, and 5 wt % CuO deposited on four supports (zirconia, sulfated zirconia, tungstated zirconia, and La2O3-stabilized zirconia) is studied. The supports and the catalysts are characterized via BET, XRD, and thermal analysis. It is shown that 100% conversion of ethane is achieved even at a temperature of 300°C. It is found that the temperature of 100% conversion falls upon an increase in the copper content; the lowest temperature is obtained for catalysts based on unmodified zirconia. With respect to catalytic activity, the samples with the highest copper content are in the order 5%Cu/ZrO2 > 5%Cu/5%La2O3/ZrO2 > 5%Cu/15%WO3/ZrO2 > 5%Cu/5%SO4/ZrO2. The temperatures of 100% ethane conversion for these catalysts are 305, 385, 410, and 419°C, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. F. J. Janssen and R. A. Santen, Environmental Catalysis (Imperial College Press, London, 1999).

    Book  Google Scholar 

  2. L. Matejova, P. Topka, K. Jiratova, and O. Solcova, Appl. Catal. A: Gen. 443, 40 (2012).

    Article  Google Scholar 

  3. M. S. Kamal, S. A. Razzak, and M. M. Hossain, Atmos. Environ. 140, 117 (2016).

    Article  CAS  Google Scholar 

  4. L. M. Kustov, K. M. Skupov, S. S. Goryashchenko, and O. V. Masloboishchikova, Zh. Fiz. Khim. 88, 891 (2014).

    Google Scholar 

  5. A. V. Kucherov, O. P. Tkachenko, O. A. Kirichenko, et al., Top. Catal. 52, 351 (2009).

    Article  CAS  Google Scholar 

  6. E. V. Makshina, L. V. Borovskikh, A. L. Kustov, G. N. Mazo, and B. V. Romanovskii, Russ. J. Phys. Chem. A 79, 191 (2005).

    CAS  Google Scholar 

  7. A. L. Kustov, O. P. Tkachenko, L. M. Kustov, and B. V. Romanovsky, Environ. Int. 37, 1053 (2011).

    Article  CAS  Google Scholar 

  8. N. A. Davshan, A. L. Kustov, O. P. Tkachenko, et al., ChemCatChem 6, 1990 (2014).

    Article  CAS  Google Scholar 

  9. T. P. Otroshchenko, A. O. Turakulova, V. A. Voblikova, L. V. Sabitova, S. V. Kutsev, and V. V. Lunin, Russ. J. Phys. Chem. A 87, 1804 (2013).

    Article  CAS  Google Scholar 

  10. Yu. P. Semushina, S. I. Pechenyuk, L. F. Kuz’mich, and A. I. Knyazeva, Russ. J. Phys. Chem. A 91, 26 (2017).

    Article  CAS  Google Scholar 

  11. I. Yu. Kaplin, E. S. Lokteva, E. V. Golubina, K. I. Maslakov, S. A. Chernyak, A. V. Levanov, N. E. Strokova, and V. V. Lunin, Russ. J. Phys. Chem. A 90, 2157 (2016).

    Article  CAS  Google Scholar 

  12. K. I. Slovetskaya, A. A. Greish, M. P. Vorob’eva, and L. M. Kustov, Russ. Chem. Bull. Int. Ed. 50, 1589 (2001).

    Article  CAS  Google Scholar 

  13. A. N. Pushkin, O. K. Gulish, D. A. Koshcheeva, and M. S. Shebanov, Russ. J. Phys. Chem. A 87, 23 (2013).

    Article  CAS  Google Scholar 

  14. Y. Fang and Y. Guo, Chin. J. Catal. 39, 566 (2018).

    Article  CAS  Google Scholar 

  15. A. Bialas, T. Kondratovicz, M. Drozdec, and P. Kustrowski, Catal. Today 257, 144 (2015).

    Article  CAS  Google Scholar 

  16. G. Aguila, F. Gracia, J. Cortes, and P. Araya, Appl. Catal. B: Environ. 77, 325 (2008).

    Article  CAS  Google Scholar 

  17. A. V. Ivanov and L. M. Kustov, Ross. Khim. Zh. 2, 21 (2000).

    Google Scholar 

  18. K. Arata, Adv. Catal. 37, 165 (1990).

    CAS  Google Scholar 

  19. A. V. Ivanov, E. G. Khelkovskaya-Sergeeva, and T. V. Vasina, Russ. Chem. Bull. 48, 1266 (1999).

    Article  CAS  Google Scholar 

  20. M. Scheifauer, R. Grasselli, and H. Knozinger, Langmuir 14, 30 (1998).

    Google Scholar 

  21. A. L. Klyachko-Gurvich, Izv. Akad. Nauk SSSR, Otd. Khim. Nauk, No. 10, 1884 (1961).

  22. A. Clearfield, G. P. D. Serrette, and A. H. Khazi-Syed, Catal. Today 20, 295 (1994).

    Article  CAS  Google Scholar 

  23. O. Kirichenko, G. Kapustin, V. Nissenbaum, et al., J. Therm. Anal. Calorim. 134, 233 (2018).

    Article  CAS  Google Scholar 

  24. B. Reddy and M. Patil, Chem. Rev. 109, 2185 (2009).

    Article  CAS  Google Scholar 

  25. L. P. Kolmakova, O. N. Kovtun, and N. N. Dovzhenko, J. Siber. Fed. Univ., Eng. Technol. 3, 293 (2010).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Kustov.

Additional information

Translated by M. Timoshinina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Donyush, P.A., Kustov, A.L., Nissenbaum, V.D. et al. Ethane Oxidation in the Presence of Copper-Containing Zirconia Modified with Acid Additives. Russ. J. Phys. Chem. 93, 2140–2145 (2019). https://doi.org/10.1134/S0036024419110086

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024419110086

Keywords:

Navigation