Skip to main content
Log in

Estimation of Structural Parameters of Protic Ionic Liquids for Activity Coefficient Models and Calculations of LLE Phase Diagrams

  • STRUCTURE OF MATTER AND QUANTUM CHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Modeling liquid–liquid equilibrium (LLE) is essential for optimizing the operation and safety of chemical engineering processes. Therefore, some researchers have investigated the modelling of ternary systems containing protic ionic liquids. In most cases, thermodynamic modeling was performed using the non-random two-liquid model (NRTL) for its simplicity and the absence of structural parameters. UNIQUAC model has also been used, but the structural parameters of protic ionic liquids are still scarce. In this work, the area and volume parameters were calculated by Connolly’s method. The parameters obtained were used to correlate LLE data for thirteen ternary systems, among these we can high light (m-2HEAA, m-2HEABor, m-2HEAH) + DBT+ dodecane. Therefore, the estimated structural parameters allowed to generate seventy-eight interaction parameters between the solvent and the ionic liquid. New structural parameters protic ionic liquids were estimated. The results are shown with standard deviations between the calculated and experimental compositions with satisfactory results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. S. P. M. Ventura, A. M. M. Gonçalves, T. Sintra, J. L. Pereira, F. Gonçalves, and J. A. P. Coutinho, Ecotoxicology 1, 22 (2013).

    Google Scholar 

  2. S. Shahriari, L. C. Tome, J. M. M. Araujo, L. P. N. Rebelo, J. A. P. Coutinho, I. M. Marrucho, and Freire, RSC Adv. 3, 1835 (2013).

    CAS  Google Scholar 

  3. A. Fredenslund, J. M. P. Russell, and L. Jones, AIChE J. 21, 1086 (1975).

    Article  CAS  Google Scholar 

  4. J. P. L. Santos, F. W. Tavares, and M. Castier, Fluid Phase Equilib. 133, 296 (2010).

    Google Scholar 

  5. P. M. Florido, I. M. G. Andrade, M. C. Capellini, F. H. Carvalho, K. K. Aracava, C. C. Koshima, C. E. C. Rodrigues, and C. B. Goncalves, J. Chem. Thermodyn. 72, 152 (2014).

    Article  CAS  Google Scholar 

  6. D. S. Abrams and J. M. Prausnitz, AIChE J. 21, 116 (1975).

    Article  CAS  Google Scholar 

  7. R. S. Santiago, G. R. Santos, and M. Aznar, Fluid Phase Equilib. 66, 278 (2009).

    Google Scholar 

  8. R. S. Santiago, G. R. Santos, and M. Aznar, Fluid Phase Equilib. 66, 293 (2010).

    Google Scholar 

  9. S. R. Pilli, T. Banerjee, and K. Mohanty, Fluid Phase Equilib. 12, 381 (2014).

    Google Scholar 

  10. A. Haghtalab and A. Paraj, J. Mol. Liq. 43, 171 (2012).

    Google Scholar 

  11. J. Lazzus, J. Mol. Liq. 44, 186 (2013).

    Google Scholar 

  12. V. H. Alvarez and M. Aznar, J. Chin. Inst. Chem. Eng. 39, 353 (2008).

    Article  CAS  Google Scholar 

  13. A. Bondi, J. Phys. Chem. 68, 441 (1964).

    Article  CAS  Google Scholar 

  14. L. M. Connolly, J. Am. Chem. Soc. 107, 1118 (1985).

    Article  CAS  Google Scholar 

  15. D. Abrams and J. M. Prausnitz, AIChE J. 21, 116 (1975).

    Article  CAS  Google Scholar 

  16. M. Schwaab and J. C. Pinto, Analise de Dados Experimentais, Vol. 1: Fundamentos de Estatistica (RJ, Rio de Janeiro, 2007).

  17. J. A. Nelder and R. Mead, Comput. J. 7, 308 (1965).

    Article  Google Scholar 

  18. I. J. Myung, J. Math. Psychol. 47, 90 (2003).

    Article  Google Scholar 

  19. C. Jork, M. Seiler, Y. A. Beste, and W. Arlt, J. Chem. Eng. Data 49, 852 (2004).

    Article  CAS  Google Scholar 

  20. T. M. Letcher, B. Soko, and P. Reddy, J. Chem. Eng. Data 48, 1587 (2003).

    Article  CAS  Google Scholar 

  21. T. M. Letcher, N. Deenadayalu, B. Soko, D. Ramjugernath, and P. K. Naicker, J. Chem. Eng. Data 48, 904 (2003).

    Article  CAS  Google Scholar 

  22. R. M. Maduro and M. Aznar, Fluid Phase Equilib. 129, 265 (2008).

    Google Scholar 

  23. A. Arce, O. Rodriguez, and A. Soto, J. Chem. Eng. Data 49, 514 (2004).

    Article  CAS  Google Scholar 

  24. H. Mohsen, H. Al-Rashed, Khaled, A. E. Alkhaldi, Mohammad S. Al-Tuwaim, and M. S. Fandary, J. Chem. Eng. Data 57, 2907 (2012).

    Article  CAS  Google Scholar 

  25. L. H. De Oliveira, V. H. Alvarez, and M. Aznar, J. Chem. Eng. Data 57, 744 (2012).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Most sincere thanks to the Department of Petroleum Engineering of the Federal University of Alagoas and Tiradentes University Center for their dedicated assistance in field and laboratory work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dheiver Santos or Shaik Babu.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dheiver Santos, Shaik Babu Estimation of Structural Parameters of Protic Ionic Liquids for Activity Coefficient Models and Calculations of LLE Phase Diagrams. Russ. J. Phys. Chem. 93, 1312–1316 (2019). https://doi.org/10.1134/S0036024419070069

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024419070069

Keywords:

Navigation