Skip to main content
Log in

Heat Capacity and the Thermodynamic Properties of Layered Perovskite-Like Oxides K2La2Ti3O10 and K2Nd2Ti3O10

  • CHEMICAL THERMODYNAMICS AND THERMOCHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The heat capacity of perovskite-like layered titanates K2La2Ti3O10 and K2Nd2Ti3O10 is studied via precision adiabatic vacuum calorimetry in the temperature range of 7–350 K, and by differential scanning calorimetry in the range 350–670 K. Standard thermodynamic functions are calculated from experimental data on heat capacity in the temperature range of 9–670 K: enthalpy H(T) − H(9), entropy S(T) − S(9), and Gibbs function −[G(T) − G(9)].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. K. Toda, Y. Kameo, S. Kurita, et al., J. Alloys Compd. 234, 19 (1996).

    Article  CAS  Google Scholar 

  2. D. K. Pradhan, B. K. Samantaray, R. N. P. Choudhary, et al., Mater. Sci. Eng. B 116, 7 (2005).

    Article  CAS  Google Scholar 

  3. Y. Moritomo, A. Asamitsu, H. Kuwahara, et al., Nature (London, U.K.) 380, 141 (1996).

    Article  CAS  Google Scholar 

  4. M. Machida, K. Miyazaki, S. Matsushima, et al., Chem. Mater. 13, 1433 (2003).

    Article  CAS  Google Scholar 

  5. Y.-W. Tai, J.-S. Chen, Ch.-C. Yang, et al., Catal. Today 97, 95 (2004).

    Article  CAS  Google Scholar 

  6. I. A. Rodionov and I. A. Zvereva, Russ. Chem. Rev. 85, 248 (2016).

    Article  CAS  Google Scholar 

  7. I. A. Rodionov, O. I. Silyukov, T. D. Utkina, M. V. Chislov, Yu. P. Sokolova, and I. A. Zvereva, Russ. J. Gen. Chem. 82, 1191 (2012).

    Article  CAS  Google Scholar 

  8. I. A. Rodionov, E. V. Mechtaeva, A. A. Burovikhina, et al., Monatsh. Chem. 149, 475 (2018).

    Article  CAS  Google Scholar 

  9. M. Sato, K. Toda, K. Shimizu, et al., Chem. Mater. 17, 5161 (2005).

    Article  CAS  Google Scholar 

  10. R. E. Schaak and T. E. Mallouk, J. Solid State Chem. 161, 225 (2001).

    Article  CAS  Google Scholar 

  11. J. Gopalakrishnan, T. Sivakumar, K. Ramesha, et al., J. Am. Chem. Soc. 122, 6237 (2000).

    Article  CAS  Google Scholar 

  12. R. E. Shaak and T. E. Mallouk, J. Am. Chem. Soc. 122, 2798 (2000).

    Article  CAS  Google Scholar 

  13. O. I. Silyukov, L. D. Kulish, D. V. Trofimova, et al., J. Solid State Chem. 259, 28 (2018).

    Article  CAS  Google Scholar 

  14. S. V. Kohut, A. M. Sankovich, A. V. Blokhin, et al., J. Therm. Anal. Calorim. 115, 119 (2014).

    Article  CAS  Google Scholar 

  15. A. V. Markin, A. M. Sankovich, N. N. Smirnova, et al., J. Chem. Eng. Data 60, 3069 (2015).

    Article  CAS  Google Scholar 

  16. A. M. Sankovich, I. V. Chislova, A. V. Blokhin, et al., J. Therm. Anal. Calorim. 126, 601 (2016).

    Article  CAS  Google Scholar 

  17. A. M. Sankovich, A. V. Markin, N. N. Smirnova, et al., J. Therm. Anal. Calorim. 131, 1107 (2018).

    Article  CAS  Google Scholar 

  18. S. N. Ruddlesden and P. Popper, Acta Crystallogr. 10, 538 (1957).

    Article  CAS  Google Scholar 

  19. M. Richard, L. Brohan, and M. Tournoux, J. Solid State Chem. 112, 345 (1994).

    Article  CAS  Google Scholar 

  20. R. M. Varushchenko, A. I. Druzhinina, and E. L. Sorkin, J. Chem. Thermodyn. 29, 623 (1997).

    Article  CAS  Google Scholar 

  21. V. M. Malyshev, G. A. Mil’ner, E. L. Sorkin, et al., Prib. Tekh. Eksp., No. 6, 195 (1985).

  22. G. W. H. Höhne, W. F. Hemminger, and H.-J. Flammersheim, Differential Scanning Calorimetry (Springer, Berlin, Heidelberg, 2003).

    Book  Google Scholar 

  23. V. A. Drebushchak, J. Therm. Anal. Calorim. 79, 213 (2005).

    Article  CAS  Google Scholar 

  24. A. M. Sankovich and I. A. Zvereva, J. Struct. Chem. 55, 771 (2014).

    Article  CAS  Google Scholar 

  25. D. Fox, M. M. Labes, and A. Weissberger, Physics and Chemistry of the Organic Solid State (Wiley, New York, 1963).

    Google Scholar 

  26. T. S. Yakubov, Dokl. Akad. Nauk SSSR 310, 145 (1990).

    Google Scholar 

  27. V. B. Lazarev, A. D. Izotov, K. S. Gavrichev, et al., Thermochim. Acta 269–270, 109 (1995).

    Article  Google Scholar 

  28. J. P. McCullough and D. W. Scott, Calorimetry of Non-Reacting Systems (Butterworth, London, 1968).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research, project no. 18-03-00915; and by the RF Ministry of Education and Science as part of task no. 4.6138.2017/VU, “Leading Researchers on a Permanent Basis.” TG measurements were made at the Thermogravimetric and Calorimetric Studies shared resource center. Phase and element composition were investigated at the X-ray Diffraction and Physical Means of Surface Studies shared resource centers in the Science Park of St. Petersburg State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Sankovich.

Additional information

Translated by A. Bannov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sankovich, A.M., Markin, A.V., Smirnova, N.N. et al. Heat Capacity and the Thermodynamic Properties of Layered Perovskite-Like Oxides K2La2Ti3O10 and K2Nd2Ti3O10. Russ. J. Phys. Chem. 93, 407–416 (2019). https://doi.org/10.1134/S0036024419030178

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024419030178

Keywords:

Navigation