Skip to main content
Log in

Features of Structural Solvation of Methylxanthines in Carbon Tetrachloride–Methanol Binary Mixtures: Molecular Dynamics Simulation

  • PHYSICAL CHEMISTRY OF SOLUTIONS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Solvation of methylxanthines (caffeine, theophylline, and theobromine) in carbon tetrachloride–methanol mixtures is studied by means of molecular dynamics over the range of concentrations under standard conditions. Methylxanthine molecules form hydrogen bonds with methanol through two oxygen atoms and one nitrogen atom and interact weakly through a hydrogen atom bound to the carbon of the imidazole ring. The distribution of the number of hydrogen bonds formed between different methylxanthine and methanol atoms is independent of the concentration of the polar co-solvent. At low amounts of methanol, methylxanthines tend to form stacking aggregates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. F. W. Favero and M. S. Skaf, J. Supercrit. Fluids 34, 237 (2005).

    Article  CAS  Google Scholar 

  2. L. Tavagnacco, U. Schnupf, P. Mason, et al., J. Phys. Chem. B 115, 10957 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. L. Tavagnacco, J. W. Brady, F. Bruni, et al., J. Phys. Chem. B 119, 13294 (2015).

    Article  CAS  PubMed  Google Scholar 

  4. L. Tavagnacco, Y. Gerelli, A. Cesàro, et al., J. Phys. Chem. B 120, 9987 (2016).

    Article  CAS  PubMed  Google Scholar 

  5. B. Sharma and S. Paul, J. Chem. Phys. 139, 194504 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. B. Sharma and S. Paul, J. Phys. Chem. B 119, 6421 (2015).

    Article  CAS  PubMed  Google Scholar 

  7. M. Falk, W. Chew, J. A. Walter, et al., Can. J. Chem. 76, 48 (1998).

    Article  CAS  Google Scholar 

  8. M. Falk, M. Gil, and N. Iza, Can. J. Chem. 68, 1293 (1990).

    Article  CAS  Google Scholar 

  9. N. O. Johnson, T. P. Light, G. MacDonald, and Y. Zhang, J. Phys. Chem. B 121, 1649 (2017).

    Article  CAS  PubMed  Google Scholar 

  10. V. A. Golubev, R. S. Kumeev, D. L. Gurina, et al., J. Mol. Liq. 241, 922 (2017).

    Article  CAS  Google Scholar 

  11. M. J. Abraham, D. van der Spoel, E. Lindahl, et al., GROMACS User Manual, Version 5.0.7 (2015). www.gromacs.org.

  12. W. L. Jorgensen, D. S. Maxwell, and J. Tirado-Rives, J. Am. Chem. Soc. 118, 11225 (1996).

    Article  CAS  Google Scholar 

  13. A. K. Malde, L. Zuo, M. Breeze, et al., J. Chem. Theory Comput. 7, 4026 (2011).

    Article  CAS  PubMed  Google Scholar 

  14. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon, London, 1987).

    Google Scholar 

  15. S. Nose, Mol. Phys. 52, 255 (1984).

    Article  CAS  Google Scholar 

  16. W. G. Hoover, Phys. Rev. A 31, 1695 (1985).

    Article  CAS  Google Scholar 

  17. T. Darden, D. York, and L. Pedersen, J. Chem. Phys. 98, 10089 (1993).

    Article  CAS  Google Scholar 

  18. U. Essmann, L. Perera, and M. L. Berkowitz, J. Chem. Phys. 103, 8577 (1995).

    Article  CAS  Google Scholar 

  19. B. Hess, H. Bekker, H. J. C. Berendsen, et al., J. Comput. Chem. 18, 1463 (1997).

    Article  CAS  Google Scholar 

  20. W. Humphrey, A. Dalke, and K. Schulten, J. Mol. Graph. 14, 33 (1996).

    Article  CAS  PubMed  Google Scholar 

  21. G. A. Krestov, V. N. Afanas’ev, and L. S. Efremova, Physicochemical Properties of Binary Solvents (Khimiya, Leningrad, 1988), p. 688 [in Russian].

    Google Scholar 

  22. R. Veldhuizen and S. W. de Leeuw, J. Chem. Phys. 105, 2828 (1996).

    Article  CAS  Google Scholar 

  23. R. Laenen, G. M. Gale, and N. Lascoux, J. Phys. Chem. A 103, 10708 (1999).

    Article  CAS  Google Scholar 

  24. Z. Kecki, A. Sokolowska, and J. Yarwood, J. Mol. Liq. 81, 213 (1999).

    Article  CAS  Google Scholar 

  25. M. Musso, H. Torii, P. Ottaviani, A. Asenbaum, et al., J. Phys. Chem. A 106, 10152 (2002).

    Article  CAS  Google Scholar 

  26. H. Torii, Chem. Phys. Lett. 393, 153 (2004).

    Article  CAS  Google Scholar 

  27. M. K. Teng, N. Usman, C. A. Frederick, et al., Nucl. Acid Res. 16, 2671 (1988).

    Article  CAS  Google Scholar 

  28. J. Zhong, N. Tang, B. Asadzadeh, et al., J. Chem. Eng. Data (2017). https://doi.org/10.1021/acs.jced.7b00065

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research, project no. 16-33-00248 mol_a. The authors are grateful to the Joint Supercomputer Center, Russian Academy of Sciences, Moscow, for the access to the MVS-100K cluster.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. L. Gurina.

Additional information

Translated by A. Tulyabaev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gurina, D.L., Golubev, V.A. Features of Structural Solvation of Methylxanthines in Carbon Tetrachloride–Methanol Binary Mixtures: Molecular Dynamics Simulation. Russ. J. Phys. Chem. 93, 75–80 (2019). https://doi.org/10.1134/S0036024419010102

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024419010102

Keywords:

Navigation