Skip to main content
Log in

Sono-Photocatalytic Degradation of 4-Clorophenol in Aqueous Solutions

  • COLLOID CHEMISTRY AND ELECTROCHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The kinetic patterns of oxidative processes involving highly reactive oxygen-containing radicals generated in situ in the aqueous medium affected by acoustic cavitation of the megahertz range (1.7 MHz) and UV radiation (254 nm) are established using 4-chlorophenol as an example. The results indicate the substantial activation of 4-chlorophenol oxidation processes upon both UV irradiation and the combined influence of high-frequency ultrasound of the megahertz range and UV irradiation in the Fenton-like iron-persulfate system Fe2+/\({{{\text{S}}}_{{\text{2}}}}{\text{O}}_{8}^{{2 - }}\). Full conversion of 4-chlorophenol in the hybrid oxidative system US/UV/Fe2+/\({{{\text{S}}}_{{\text{2}}}}{\text{O}}_{8}^{{2 - }}\) is attained after 60 min of treatment, while the mineralization of the organic substance after 180 min of treatment is 83.2%. The activation of a coupled radical-chain mechanism in the oxidative systems US/UV/Fe2+/\({{{\text{S}}}_{{\text{2}}}}{\text{O}}_{8}^{{2 - }}\) and UV/Fe2+/\({{{\text{S}}}_{{\text{2}}}}{\text{O}}_{8}^{{2 - }}\) is confirmed by high values of the synergic indices in both cases for the conversion of 4-chlorophenol (φ1 > 1) and the mineralization of dissolved organic matter (φ2 ≫ 1). The considered sono- and/or photoinduced oxidative systems can be arranged in the following order according to the effectiveness of the oxidative degradation of 4-chlorophenol US/UV/Fe2+/\({{{\text{S}}}_{{\text{2}}}}{\text{O}}_{8}^{{2 - }}\) > UV/Fe2+/\({{{\text{S}}}_{{\text{2}}}}{\text{O}}_{8}^{{2 - }}\) ≫ US/Fe2+/\({{{\text{S}}}_{{\text{2}}}}{\text{O}}_{8}^{{2 - }}\) > Fe2+/\({{{\text{S}}}_{{\text{2}}}}{\text{O}}_{8}^{{2 - }}\) > US/UV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. M. Cheng, G. Zeng, D. Huang, C. Lai, et al., Chem. Eng. J. 284, 582 (2016).

    Article  CAS  Google Scholar 

  2. J. M. Monteagudo, A. Duran, I. S. Martin, and S. Garcia, Appl. Catal. B 152–153, 59 (2014).

    Article  CAS  Google Scholar 

  3. T. Harada, T. Yatagai, and Y. Kawase, Chem. Eng. J. 303, 611 (2016).

    Article  CAS  Google Scholar 

  4. F. Fu, D. D. Dionysiou, and H. Liu, J. Hazard. Mater. 267, 194 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. M. Poddar, S. Sharma, and V. S. Moholkar, Macromol. Symp. 361, 82 (2016).

    Article  CAS  Google Scholar 

  6. L. W. Matzek and K. E. Carter, Chemosphere 151, 178 (2016).

    Article  CAS  PubMed  Google Scholar 

  7. S. Wacławek, H. V. Lutze, K. Grübel, V. V. T. Padil, et al., Chem. Eng. J. 330, 44 (2017).

    Article  CAS  Google Scholar 

  8. X. Xie, Y. Zhang, W. Huang, and S. Huang, J. Environ. Sci. 24, 821 (2012).

    Article  CAS  Google Scholar 

  9. X. Zou, T. Zhou, J. Mao, and X. Wu, Chem. Eng. J. 257, 36 (2014).

    Article  CAS  Google Scholar 

  10. Y.-J. Shih, W. N. Putra, Y.-H. Huang, and J.-Ch. Tsai, Chemosphere 89, 1262 (2012).

    Article  CAS  PubMed  Google Scholar 

  11. Y.-T. Lin, C. Liang, and J.-H. Chen, Chemosphere 82, 1168 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. X. Chen, Z. Xue, Y. Yao, and W. Wang, Int. J. Photoenergy 2012, 754691 (2012).

    Google Scholar 

  13. S. Wang, N. Zhou, S. Wu, Q. Zhang, et al., Ultrason. Sonochem. 23, 128 (2015).

    Article  CAS  Google Scholar 

  14. S. Wang and N. Zhou, Ultrason. Sonochem. 29, 156 (2016).

    Article  CAS  PubMed  Google Scholar 

  15. B. Li and J. Zhu, Chem. Eng. J. 284, 750 (2016).

    Article  CAS  Google Scholar 

  16. D. G. Aseev, M. R. Sizykh, and A. A. Batoeva, Russ. J. Phys. Chem. A 91, 2331 (2017).

    Article  CAS  Google Scholar 

  17. M. R. Sizykh and A. A. Batoeva, Russ. J. Phys. Chem. A 90, 1298 (2016).

    Article  CAS  Google Scholar 

  18. T. J. Mason and A. Tiehm, Advanced in Sonochemistry. Ultrasound in Environmental Protection (Elsevier Science, Amsterdam, 2001).

    Google Scholar 

  19. L. H. Thompson and L. K. Doraiswamy, Ind. Eng. Chem. Res. 38, 1215 (1999).

    Article  CAS  Google Scholar 

  20. M. R. Hoffmann, I. Hua, and R. Hochemer, Ultrason. Sonochem. 3, 163 (1996).

    Article  Google Scholar 

  21. J. Lifka, B. Ondruschka, and J. Hofmann, Life Sci. 3, 253 (2003).

    Article  CAS  Google Scholar 

  22. M. E. Fitzgerald, V. Griffing, and J. Sullivan, J. Chem. Phys. 25, 926 (1956).

    Article  CAS  Google Scholar 

  23. T. J. Mason and J. P. Lorimer, Sonochemistry: Theory, Application, and Uses of Ultrasound in Chemistry (Ellis Horwood, New York, 1988).

    Google Scholar 

  24. S. Merouani, H. Ferkous, O. Hamdaoui, Y. Rezgui, et al., Ultrason. Sonochem. 22, 51 (2015).

    Article  CAS  PubMed  Google Scholar 

  25. S. Merouani, O. Hamdaoui, Y. Rezgui, and M. Guemini, Ultrason. Sonochem. 22, 41 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. P. Sathishkumar, R. V. Mangalaraja, and A. Sambandam, Renewable Sustainable Energy Rev. 55, 426 (2016).

    Article  CAS  Google Scholar 

  27. S. V. Sancheti and P. R. Gogate, Ultrason. Sonochem. 36, 527 (2017).

    Article  CAS  PubMed  Google Scholar 

  28. K. Yasui, Phys. Rev. E 56, 6750 (1997).

    Article  CAS  Google Scholar 

  29. A. Kotronarou, G. Mills, and M. R. Hoffmann, J. Phys. Chem. 95, 3630 (1991).

    Article  CAS  Google Scholar 

  30. S. Chakma, S. Praneeth, and V. S. Moholkar, Ultrason. Sonochem. 38, 652 (2017).

    Article  CAS  PubMed  Google Scholar 

  31. S. Chakma and V. S. Moholkar, Indian Chem. Eng. 57 (3–4), 1 (2015).

    Google Scholar 

  32. P. S. Sathishkumar, R. V. Mangalaraja, O. Rozas, H. D. Mansilla, et al., Sep. Purif. Technol. 133, 407 (2014).

    Article  CAS  Google Scholar 

  33. S. Ghafoori, A. Mowla, R. Jahani, M. Mehrvar, et al., J. Environ. Manage. 150, 128 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. B. Neppolian, A. Doronila, and M. Ashokkumar, Water Res. 44, 3687 (2010).

    Article  CAS  PubMed  Google Scholar 

  35. S. Canonica, L. Meunier, and U. Gunten, Water Res. 42, 121 (2008).

    Article  CAS  PubMed  Google Scholar 

  36. C. Wu, X. Liu, D. Wei, and J. Fan, Water Res. 35, 3927 (2001).

    Article  CAS  PubMed  Google Scholar 

  37. M. S. Khandarkhaeva, A. A. Batoeva, D. G. Aseev, and M. R. Sizykh, Russ. J. Appl. Chem. 88, 1605 (2015).

    Article  CAS  Google Scholar 

  38. J. Zhao, Y. Zhang, X. Quan, and S. Chenet, Sep. Purif. Technol. 71, 302 (2010).

    Article  CAS  Google Scholar 

  39. A. Ya. Sychev and V. G. Isak, Homogeneous Catalysis by Iron Compounds (Shtiintsa, Kishenev, 1988) [in Russian].

  40. I. Grcic, S. Papic, N. Koprivanac, and I. Kovacic, Water Res. 46, 5683 (2012).

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was performed as part of State Task no. 0339-2016-0005 for the Baikal Institute of Nature Management, Siberian Branch, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Batoeva.

Additional information

Translated by S. Lebedev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aseev, D.G., Batoeva, A.A. & Sizykh, M.R. Sono-Photocatalytic Degradation of 4-Clorophenol in Aqueous Solutions. Russ. J. Phys. Chem. 92, 1813–1819 (2018). https://doi.org/10.1134/S0036024418090030

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024418090030

Keywords:

Navigation