Skip to main content
Log in

Thermodynamic Parameters of Cholesteric/Smectic A Transition in Cholesteric Myristate and Its Binary Mixture CM/PCPB

  • Chemical Thermodynamics and Thermochemistry
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Thermodynamic properties of the cholesteryl myristate (CM) and its binary mixture CM/PCPB (p-pentylphenyl-2-chloro-4(p-pentylbenzoyl)-benzoate) are studied at the concentrations of xPCPB = 0.052 and 0.219 as a function of temperature near the cholosteric/smectic A transition. By analyzing the observed molar volume from the literature, the temperature dependences of the thermal expansion, isothermal compressibility and the difference in the specific heat are calculated and, the Pippard relations are established for those compounds close to the cholesteric/smectic A transition. Predictions of the thermodynamic quantities and the Pippard relations can be examined by the experimental measurements of the CM and its binary mixture of CM/PCPB close to the cholesteric/smectic A transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. J. Davis, R. S. Porter, and E. M. Barrall, Mol. Cryst. Liq. Cryst. 11, 319 (1970).

    Article  CAS  Google Scholar 

  2. M. J. Janiak, C. R. Loomis, G. G. Shipley, and D. M. Small, J. Mol. Biol. 86, 325 (1974).

    Article  CAS  PubMed  Google Scholar 

  3. E. M. Barrall, R. S. Porter, and J. F. Johnson, J. Phys. Chem. 71, 895 (1967).

    Article  CAS  Google Scholar 

  4. D. M. Small, Surface Chemistry of Biological Systems (Plenum, New York, 1970).

    Google Scholar 

  5. A. V. Galanti and R. S. Porter, J. Phys. Chem. 76, 3089 (1972).

    Article  CAS  Google Scholar 

  6. C. W. Griffen and R. S. Porter, Mol. Cryst. Liq. Cryst. 21, 77 (1973).

    Article  Google Scholar 

  7. R. J. Krzewski and R. S. Porter, Mol. Cryst. Liq. Cryst. 21, 99 (1973).

    Article  Google Scholar 

  8. K. S. Kunihisa and T. Shinoda, Bull. Chem. Soc. Jpn. 48, 3506 (1973).

    Article  Google Scholar 

  9. A. K. George and A. R. K. L. Padmini, Mol. Cryst. Liq. Cryst. 65, 217 (1981).

    Article  CAS  Google Scholar 

  10. P. Pollmann and K. Schulte, Ber. Bunsenges, Phys. Chem. 89, 780 (1985).

    Article  CAS  Google Scholar 

  11. H. Kishimoto, T. Iwasaki, and M. Yonese, Chem. Pharm. Bull. 34, 2698 (1986).

    Article  CAS  Google Scholar 

  12. I. Medina, Liq. Cryst. 12, 989 (1992).

    Article  CAS  Google Scholar 

  13. V. A. Andreev and I. V. Okinikova, Russ. Chem. Bull. 44, 1223 (1995).

    Article  Google Scholar 

  14. L. Sabrinov, V. Lerman, Y. Turakulov, and D. Semenov, Mol. Cryst. Liq. Cryst. 366, 1 (2001).

    Article  Google Scholar 

  15. H. Yurtseven and E. Kilit, Phys. Proc. Mugla Univ. (Turkey) 1, 597 (2008).

    Google Scholar 

  16. J. M. Schnur and D. E. Martire, Mol. Cryst. Liq. Cryst. 26, 213 (1973).

    Article  Google Scholar 

  17. B. E. North and D. M. Small, J. Phys. Chem. 81, 723 (1977).

    Article  CAS  Google Scholar 

  18. L. I. Mineev, I. I. Sushkin and I. G. Chistyakov, Sov. Phys. Dokl. 28, 708 (1983).

    Google Scholar 

  19. M. P. McCourt, N. Li, W. A. Pangborn, R. Miller, C. M. Weeks, and D. L. Dorset, J. Phys. Chem. 100, 9842 (1996).

    Article  CAS  Google Scholar 

  20. S. L. Srivastava and R. Dhar, Mol. Cryst. Liq. Cryst. 366, 79 (2001).

    Article  CAS  Google Scholar 

  21. P. H. Keyes, H. T. Weston and W. B. Daniels, Phys. Rev. Lett. 31, 628 (1973).

    Article  CAS  Google Scholar 

  22. H. Yurtseven and S. Şen, Ann. N. Y. Acad. Sci. 1161, 416 (2009).

    Article  CAS  PubMed  Google Scholar 

  23. V. M. Semenchenko, V. M. Byankin and Y. Ya. Baskakov, Sov. Phys. Crystallogr. 20, 111 (1975).

    Google Scholar 

  24. J. Hermann, R. Sandrock, W. Spratte, and G. M. Schneider, Mol. Cryst. Liq. Cryst. Lett. 56, 183 (1980).

    Article  Google Scholar 

  25. G. W. Gray, V. Vill, H. W. Spiess, D. Demus, and J. W. Goodby, Physical Properties of Liquid Crystals (Wiley-VCH, Weinheim, New York, etc., 2009).

    Google Scholar 

  26. H. Brown, Advances in Liquid Crystals (Academic, New York, San Francisco, London, 1976).

    Google Scholar 

  27. H. Yurtseven, B. Yolal, and O. Tari, Mol. Cryst. Liq. Cryst. 632, 97 (2016).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Yurtseven.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yurtseven, H., Dogan, E.K. Thermodynamic Parameters of Cholesteric/Smectic A Transition in Cholesteric Myristate and Its Binary Mixture CM/PCPB. Russ. J. Phys. Chem. 92, 1208–1212 (2018). https://doi.org/10.1134/S0036024418060250

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024418060250

Keywords

Navigation