Skip to main content
Log in

On the Nature of the Cherdyntsev–Chalov Effect

  • To the 100Th Anniversary of the Karpov Institute of Physical Chemistry
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

It is shown that the Cherdyntsev–Chalov effect, usually presented as the separation of even isotopes of uranium upon their transition from the solid to the liquid phase, can include initiated acceleration of the radioactive decay of uranium-238 nuclei during the formation of cracks in geologically (seismic and volcanically) active zones of the Earth’s crust. The fissuring of the solid-phase medium leads to an increase in mechanical tensile stress and the emergence of strong local electric fields, resulting in the injection of chemical-scale high-energy electrons into the aqueous phase of the cracks. Under these conditions, the e catalytic decay of uranium-238 nucleus studied earlier can occur during the formation of metastable protactinium-238 nuclei with locally distorted nucleon structure, which subequently undergo βdecay with the formation of thorium-234 and helium-4 nuclei as products of the fission of the initial uranium-238 nucleus with a characteristic period of several years. The observed increased activity of uranium-234 nuclei that form during the subsequent β-decay of thorium and then protactinium is associated with the initiated fission of uranium-238. The possibility is discussed of developing thermal power by using existing wastes from uranium production that contain uranium-238 to activate this isotope through the mechanochemical processing of these wastes in aqueous media with the formation of 23891 Pa isu , the half-life of which is several years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Cherdyntsev and P. I. Chalov, USSR Discovery No. 163 (TsNIIPI, Moscow, 1977), p. 28 [in Russian].

    Google Scholar 

  2. V. V. Cherdyntsev, Uranium-234 (Atomizdat, Moscow, 1969; Israel Program for Scientific Translations, Jerusalem, 1969).

    Google Scholar 

  3. E. Yu. Yakovlev, G. P. Kiselev, S. V. Druzhinin, and S. B. Zykov, Vestn. Sev. (Arktich.) Fed. Univ., Ser.: Estestv. Nauki, No. 3, 15 (2016).

    Google Scholar 

  4. M. Koide and E. Golberg, Prog. Oceanogr. 3, 173 (1965).

    Article  CAS  Google Scholar 

  5. A. I. Malov and G. P. Kiselev, Uranium in Underground Waters of the Mezen Syneclise (Yekaterinburg, 2008) [in Russian].

    Google Scholar 

  6. J. B. Paces, K. R. Ludwig, Z. E. Peterman, and L. A. Neymark, Appl. Geochem. 17, 751 (2002).

    Article  CAS  Google Scholar 

  7. S. V. Rasskazov, E. P. Chebykin, A. M. Ilyasova, et al., Geodyn. Tectonophys. 6, 519 (2015).

    Article  Google Scholar 

  8. A. V. Trapeznikov, I. V. Molchanova, E. N. Karavaeva, and V. N. Trapeznikova, Migration of Radionuclides in Freshwater and Terrestrial Ecosystems (Yekaterinburg, 2007), Vol. 1 [in Russian].

  9. R. C. Finkel, Geophys. Res. Lett. 8, 453 (1981).

    Article  CAS  Google Scholar 

  10. S. F. Timashev, Dokl. Akad. Nauk SSSR 276, 898 (1984).

    CAS  Google Scholar 

  11. V. L. Bonch-Bruevich and S. G. Kalashnikov, Semiconductor Physics (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  12. S. F. Timashev, A. V. Simakin, and G. A. Shafeev, Russ. J. Phys. Chem. A 88, 1980 (2014).

    Article  CAS  Google Scholar 

  13. S. F. Timashev, Russ. J. Phys. Chem. A 89, 2072 (2015).

    Article  CAS  Google Scholar 

  14. S. F. Timashev, RENSIT 9, 15 (2017).

    Article  Google Scholar 

  15. B. V. Derjagin, V. A. Klyuev, A. G. Lipson, and Yu. P. Toporov, Colloid J. USSR 48, 8 (1986).

    Google Scholar 

  16. V. A. Tsarev, Sov. Phys. Usp. 33, 881 (1990).

    Article  Google Scholar 

  17. M. Fleishmann, S. Pons, and M. Hawkins, J. Electroanal. Chem. 261, 301 (1989).

    Article  Google Scholar 

  18. S. Timashev, Phys. Sci. Int. J. 15, 34889 (2017). http://www.sciencedomain.org/issue/2727.

    Google Scholar 

  19. S. F. Timashev, Russ. J. Phys. Chem. A 90, 2089 (2016).

    Article  CAS  Google Scholar 

  20. B. M. Dzhenbaev, B. K. Kaldybaev, and B. T. Zholboldiev, Radiats. Biol.: Radioekol. 53, 428 (2013).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. F. Timashev.

Additional information

Original Russian Text © S.F. Timashev, 2018, published in Zhurnal Fizicheskoi Khimii, 2018, Vol. 92, No. 6, pp. 883–887.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Timashev, S.F. On the Nature of the Cherdyntsev–Chalov Effect. Russ. J. Phys. Chem. 92, 1071–1075 (2018). https://doi.org/10.1134/S0036024418060183

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024418060183

Keywords

Navigation