Skip to main content
Log in

Modified Ion-Conducting Ceramics Based on Lanthanum Gallate: Synthesis, Structure, and Properties

  • To the 100Th Anniversary of the Karpov Institute of Physical Chemistry
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

A review is presented of the synthesis and complex investigation of modified ion-conducting ceramics based on heterosubstituted lanthanum gallate as a promising electrolyte material for solid oxide fuel cells. The effect the composition of multicomponent complex oxides has on the structure, microstructure, and electrophysical properties of ceramics is examined. Samples of ceramics with new compositions are produced via solid-state synthesis and modified with lithium fluoride. A drop is observed in the sintering temperature of the ceramics, caused by the liquid phase mechanism of sintering as a result of the low-melting superstoichiometric quantities of the additive. The effect lithium fluoride has on the process of phase formation, microstructure, and conductivity of the ceramics is investigated. It is found that samples modified with lithium fluoride display high density, dense grain packing, and high values of electrical conductivity at high temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. V. Korovin, Fuel Elements and Electrochemical Power Plants (Mosk. Energet. Inst., Moscow, 2005) [in Russian].

    Google Scholar 

  2. S. P. S. Badwal, S. Giddey, C. Munnings, and A. Kulkarni, J. Austral. Ceram. Soc. 50, 23 (2014).

    CAS  Google Scholar 

  3. T. Ishihara, H. Matsuda, and Y. Takita, J. Am. Chem. Soc. 116, 3801 (1994).

    Article  CAS  Google Scholar 

  4. K. Huang, R. S. Tichy, and J. B. Goodenough, J. Am. Chem. Soc. 81, 2576 (1998).

    CAS  Google Scholar 

  5. T. Ishihara, M. Honda, T. Shibayama, et al., J. Electrochem. Soc. 145, 3177 (1998).

    Article  CAS  Google Scholar 

  6. R. Biswal and K. Biswas, Int. J. Hydrogen Energy 40, 509 (2015).

    Article  CAS  Google Scholar 

  7. T. Ishihara, J. A. Kilner, M. Honda, et al., Solid State Ionics 113–115, 593 (1998).

    Google Scholar 

  8. P. Majewski, M. Rozumek, C. A. Tas, and F. Aldinger, J. Electroceram. 8, 65 (2002).

    Article  CAS  Google Scholar 

  9. P. Datta, P. Majewski, and F. Aldinger, Mater. Chem. Phys. 102, 240 (2007).

    Article  CAS  Google Scholar 

  10. R. S. Kuguoglu, T. G. Altincekic, H. Ozdemir, and M. Oksuzomer, Int. J. Hydrogen Energy 37, 16733 (2012).

    Article  CAS  Google Scholar 

  11. L. Cong, T. He, Y. Ji, et al., J. Alloys Compd. 348, 325 (2003).

    Article  CAS  Google Scholar 

  12. D. Lee, J.-H. Han, Y. Chun, et al., J. Power Sources 166, 35 (2007).

    Article  CAS  Google Scholar 

  13. T.-Y. Chen and K.-Z. Fung, J. Eur. Ceram. Soc. 28, 803 (2008).

    Article  CAS  Google Scholar 

  14. R. C. Biswal and K. Biswas, J. Eur. Ceram. Soc. 33, 3053 (2013).

    Article  CAS  Google Scholar 

  15. P.-S. Cho, S. Y. Park, Y. H. Cho, et al., Solid State Ionics 180, 788 (2009).

    Article  CAS  Google Scholar 

  16. M. Shi, Y. Xu, A. Liu, et al., Mater. Chem. Phys. 114, 43 (2009).

    Article  CAS  Google Scholar 

  17. R. Polini, A. Pamio, and E. Traversa, J. Eur. Ceram. Soc. 24, 1365 (2004).

    Article  CAS  Google Scholar 

  18. A. C. Tas, P. J. Majewski, and F. Aldinger, J. Am. Ceram. Soc. 83, 2954 (2000).

    Article  CAS  Google Scholar 

  19. C. Oncel, B. Ozkaya, and M. A. Gulgun, J. Eur. Ceram. Soc. 27, 599 (2007).

    Article  CAS  Google Scholar 

  20. B. Rambabu, S. Ghosh, W. Zhao, and H. Jena, J. Power Sources 159, 21 (2006).

    Article  CAS  Google Scholar 

  21. P. Datta, Mater. Sci. Forum 624, 109 (2009).

    Article  CAS  Google Scholar 

  22. M. S. Islam and R. A. Davies, J. Mater. Chem. 14, 86 (2004).

    Article  CAS  Google Scholar 

  23. T. Yu. Glavatskikh, N. U. Venskovskii, G. M. Kaleva, A. V. Mosunov, E. D. Politova, and S. Yu. Stefanovich, Inorg. Mater. 37, 647 (2001).

    Article  CAS  Google Scholar 

  24. V. V. Aleksandrovskii, N. U. Venskovskii, G. M. Kaleva, et al., Izv. Akad. Nauk, Ser. Fiz. 65, 1150 (2001).

    CAS  Google Scholar 

  25. T. Yu. Glavatskikh, N. U. Venskovskii, V. V. Aleksandrovskii, N. V. Golubko, A. K. Avetisov, G. M. Kaleva, A. V. Mosunov, E. D. Politova, and S. Yu. Stefanovich, Inorg. Mater. 39, 759 (2003).

    Article  CAS  Google Scholar 

  26. E. D. Politova, V. V. Aleksandrovskii, G. M. Kaleva, et al., Solid State Ionics 177, 1779 (2006).

    Article  CAS  Google Scholar 

  27. E. D. Politova, A. K. Avetisov, R. R. Zinnurov, G. M. Kaleva, V. Z. Mordkovich, A. V. Mosunov, and S. Yu. Stefanovich, Inorg. Mater. 42, 689 (2006).

    Article  CAS  Google Scholar 

  28. E. D. Politova, B. A. Loginov, G. M. Kaleva, A. V. Mosunov, and S. G. Prutchenko, Inorg. Mater. 42, 806 (2006).

    Article  CAS  Google Scholar 

  29. G. M. Kaleva, N. V. Golubko, S. V. Suvorkin, G. V. Kosarev, I. P. Sukhareva, A. K. Avetisov, and E. D. Politova, Inorg. Mater. 42, 799 (2006).

    Article  CAS  Google Scholar 

  30. C. A. Ivanov, G. M. Kaleva, V. V. Aleksandrovskii, E. D. Politova, and S. Eriksson, Crystallogr. Rep. 51, 212 (2006).

    Article  CAS  Google Scholar 

  31. S. A. Ivanov, G. M. Kaleva, A. V. Mosunov, E. D. Politova, and S. G. Eriksson, Crystallogr. Rep. 53, 68 (2008).

    Article  CAS  Google Scholar 

  32. N. V. Golubko, G. M. Kaleva, Yu. E. Roginskaya, and E. D. Politova, Inorg. Mater. 43, 1235 (2007).

    Article  CAS  Google Scholar 

  33. G. M. Kaleva, I. P. Sukhareva, A. V. Mosunov, N. V. Sadovskaya, and E. D. Politova, Russ. J. Electrochem. 53, 641 (2017).

    Article  CAS  Google Scholar 

  34. G. M. Kaleva, A. V. Mosunov, N. V. Sadovskaya, and E. D. Politova, Inorg. Mater. 53, 764 (2017).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. M. Kaleva.

Additional information

Original Russian Text © G.M. Kaleva, E.D. Politova, A.V. Mosunov, N.V. Sadovskaya, 2018, published in Zhurnal Fizicheskoi Khimii, 2018, Vol. 92, No. 6, pp. 953–959.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaleva, G.M., Politova, E.D., Mosunov, A.V. et al. Modified Ion-Conducting Ceramics Based on Lanthanum Gallate: Synthesis, Structure, and Properties. Russ. J. Phys. Chem. 92, 1138–1144 (2018). https://doi.org/10.1134/S0036024418060067

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024418060067

Keywords

Navigation