Skip to main content
Log in

Mechanisms of the Diffusion of Nonpolar Substances in a Hydrophilic Ionic Liquid

  • Chemical Thermodynamics and Thermochemistry
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The structural-dynamic features of ionic liquid-nonpolar substance systems are studied by means of molecular dynamics using Frenkel’s fundamental theory of a liquid and the phonon theory of the thermodynamics of a liquid, in combination with the DL_POLY_4.05 software package. Argon, methane, and benzene molecules serve as the dissolved substances. Model concepts are proposed and analyzed to describe the diffusion of molecules of a dissolved substance in an ionic liquid. It is shown that an increase in the mass of the molecules of a dissolved nonpolar substance correlates with their mobility in a hydrophilic ionic liquid (IL). This determines the diffusion of the components of dmim+/Cl IL solutions and is responsible for the anomalous behavior of the solubility of nonpolar substances in them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Endres, S. Zein, and El. Abedin, Phys. Chem. Chem. Phys. 8, 2101 (2006).

    Article  CAS  Google Scholar 

  2. J. S. Wilkes, J. A. Levisky, R. A. Wilson, and C. L. Hussey, Inorg. Chem. 21, 1263 (1982).

    Article  CAS  Google Scholar 

  3. M. J. Earle and K. R. Seddon, in Clean Solvents: Alternative Media for Chemical Reactions and Processing, Ed. by M. Abraham and L. Moens, ACS Symp. Ser. 819, 10 (2002).

    Article  CAS  Google Scholar 

  4. T. Koddermann, C. Werz, A. Heinz, and R. Ludwig, Chem. Phys. Chem. 7, 1944 (2006).

    Article  Google Scholar 

  5. J. N. Connongia Lopes, M. F. Costa Comes, and A. A. Padua, Phys. Lett. B 110, 16816 (2006).

    Google Scholar 

  6. J. Kumelan and D. Tuma, Ind. Eng. Chem. Res. B 109, 8236 (2007).

    Article  Google Scholar 

  7. T. R. Forester, The DL-POLY-2.0 (Daresbury Laboratory, UK, 2013), p. 309.

    Google Scholar 

  8. C. G. Hanke, S. L. Price, and R. M. Lynden-Bell, Mol. Phys. 99, 801 (2001).

    Article  CAS  Google Scholar 

  9. M. P. Allen and D. Y. Tildesley, Computer Simulation of Liquids (Clarendon, Oxford, UK, 2010).

    Google Scholar 

  10. C. C. G. Hanke, N. A. Atamas, and R. M. Lynden-Bell, Green. Chem. 4, 107 (2002).

    Article  CAS  Google Scholar 

  11. Song Hi Lee, Bull. Korean Chem. Soc. 28, 1371 (2007).

    Article  CAS  Google Scholar 

  12. W. L. Jorgensen and D. L. Severance, J. Am. Chem. Soc. 112, 4768 (1990).

    Article  CAS  Google Scholar 

  13. W. L. Jorgensen, J. D. Madura, and C. J. Swenson, J. Am. Chem. Soc. 106, 6638 (1984).

    Article  CAS  Google Scholar 

  14. H. J. C. Berendsen, J. R. Grigera, and T. P. Straatsma, J. Phys. Chem. 91, 6269 (1987).

    Article  CAS  Google Scholar 

  15. T. Schlick, Molecular Modeling and Simulation: An Interdisciplinary Guide, Interdisciplinary Applied Mathematics, Mathematical Biology (Springer, New York, 2002), p. 413.

    Book  Google Scholar 

  16. F. V. Mokshin, R. M. Yulmetyev, and P. Haggi, J. Chem. Phys. 121, 7341 (2004).

    Article  CAS  Google Scholar 

  17. A. Triolo, O. Russina, H. Bleif, and di Cola, J. Phys. Chem. B 111, 4641 (2007).

    Article  CAS  Google Scholar 

  18. A. Triolo, O. Russina, M. Fazio, et al., Chem. Phys. Lett. 457, 362 (2008).

    Article  CAS  Google Scholar 

  19. A. A. Freitas, K. Shimizu, and J. N. Lopes, J. Chem. Eng. Data 59, 3120 (2014).

    Article  CAS  Google Scholar 

  20. Chemical Encyclopedy, Ed. by I. L. Knunyants (Sovetsk. Entsiklopediya, Moscow, 1988), Vol. 1 [in Russian].

  21. Z. Mao and S. B. Sinnott, J. Phys. Chem. B 105, 6916 (2001).

    Article  CAS  Google Scholar 

  22. K. Sud Krishan and N. Upendra, Trends in Atomic and Molecular Physics (Springer Science Business Media, New York, 2012).

    Google Scholar 

  23. M. H. Kowsari and S. Alavi, J. Chem. Phys. 129, 224508 (2008).

    Article  CAS  Google Scholar 

  24. A. A. Freitas, K. Shimizu, and J. N. Lopes, J. Chem. Eng. Data 59, 3120 (2014).

    Article  CAS  Google Scholar 

  25. E. D. Chisolm and D. C. Wallace, J. Phys.: Condens. Matter 13, R739 (2001).

    CAS  Google Scholar 

  26. V. V. Brazhkin and K. Trachenko, J. Phys. Chem. B 118, 11417 (2014).

    Article  CAS  Google Scholar 

  27. E. D. Chisolm and D. C. Wallance, J. Phys.: Condens. Matter 13, R739 (2001).

    CAS  Google Scholar 

  28. G. de Lorenzi-Venneri, E. D. Chisolm, and D. C. Wallace, Phys. Rev. E 78, 041205 (2008).

    Article  Google Scholar 

  29. V. Yu. Bardik, N. P. Malomuzh, and K. S. Shakun, J. Chem. Phys. 136, 244511 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Atamas’.

Additional information

Original Russian Text © N.A. Atamas’, 2018, published in Zhurnal Fizicheskoi Khimii, 2018, Vol. 92, No. 1, pp. 45–50.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atamas’, N.A. Mechanisms of the Diffusion of Nonpolar Substances in a Hydrophilic Ionic Liquid. Russ. J. Phys. Chem. 92, 37–41 (2018). https://doi.org/10.1134/S0036024417120020

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024417120020

Keywords

Navigation