Skip to main content
Log in

Solid-liquid equilibria in the ternary system NaBr–KBr–H2O at 398 K

  • Physical Chemistry of Nanoclusters and Nanomaterials
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The solubilities of the ternary system NaBr–KBr–H2O were investigated by isothermal method at 398 K. On the basis of the experimental data, the phase diagram was plotted. In the phase diagram of ternary system NaBr–KBr–H2O at 398 K, no complex salt or solid solution was found. It belongs to simple co-saturation type. There are only one invariant point, two univariant curves, and two crystallization fields corresponding to NaBr and KBr. Using the equilibrium solubilities data of the ternary system at 398 K, mixing ioninteraction parameter ΨNa,K,Br of Pitzer’s equation was fitted by multiple linear regression method. Based on the Pitzer model and its extended Harvie–Weare (HW) model, the solubilities of phase equilibrium in the ternary system NaBr–KBr–H2O at 398 K were calculated. The phase diagram of the ternary system was plotted. The results show that calculated values have a good agreement with measured experimental data. It can demonstrate the accuracy of the experimental data, and it also shows that reasonable parameters of the Pitzer model can be used in ternary system NaBr–KBr–H2O at 398 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. T. Lin and S. L. Chen, J. Salt Lake Res. 16, 1 (2008).

    Google Scholar 

  2. Y. T. Lin, J. Salt Lake Res. 9, 56 (2001).

    Google Scholar 

  3. Y. T. Lin, J. Salt Lake Res. 14, 1 (2006).

    Google Scholar 

  4. C. E. Harvie and J. H. Weare, Geochim. Cosmochim. Acta 44, 981 (1980).

    Article  CAS  Google Scholar 

  5. C. E. Harvie, H. P. Eugster, and J. H. Weare, Geochim. Cosmochim. Acta 46, 1603 (1982).

    Article  CAS  Google Scholar 

  6. C. E. Harvie, N. Moller, and J. H. Weare, Geochim. Cosmochim. Acta 48, 723 (1984).

    Article  CAS  Google Scholar 

  7. N. Moller, Geochim. Cosmochim. Acta 52, 821 (1988).

    Article  CAS  Google Scholar 

  8. J. P. Greenberg and N. Moller, Geochim. Cosmochim. Acta 53, 2503 (1989).

    Article  CAS  Google Scholar 

  9. C. Christov and N. Moller, Geochim. Cosmochim. Acta 68, 1309 (2004).

    Article  CAS  Google Scholar 

  10. C. Christov and N. Moller, Geochim. Cosmochim. Acta 68, 3717 (2004).

    Article  CAS  Google Scholar 

  11. R. J. Speneer, N. J. Moller, and H. Weare, Geochim. Cosmochim. Acta 54, 575 (1990).

    Article  Google Scholar 

  12. C. Balarew and C. Christov, C.R. Acad. Bulg. Sci. 45, 49 (1992).

  13. C. Balarew, C. Christov, S. Petrenko, and V. Valyashko, J. Solution Chem. 22, 173 (1993).

    Article  CAS  Google Scholar 

  14. C. Christov, C. Balarew, V. Valyashko, and S. Petrenko, J. Solution Chem. 23, 595 (1994).

    Article  CAS  Google Scholar 

  15. C. Christov, S. Petrenko, C. Balarew, and V. Valyashko, Monatsh. Chem. 125, 1371 (1994).

    Article  CAS  Google Scholar 

  16. C. Christov, J. Chem. Thermodyn. 27, 1267 (1995).

    Article  CAS  Google Scholar 

  17. C. Christov and C. Balarew, J. Solution Chem. 24, 1171 (1995).

    Article  CAS  Google Scholar 

  18. C. Christov, CALPHAD 20, 501 (1996).

    Article  CAS  Google Scholar 

  19. C. Christov, Coll. Czech. Chem. Commun. 61, 1585 (1996).

    Article  CAS  Google Scholar 

  20. C. Christov, J. Chem. Thermodyn. 37, 1036 (2005).

    Article  CAS  Google Scholar 

  21. C. Christov, S. Velikova, and K. Ivanova, J. Chem. Thermodyn. 32, 1505 (2000).

    Article  CAS  Google Scholar 

  22. C. Christov, Geochim. Cosmochim. Acta 71, 3557 (2007).

    Article  CAS  Google Scholar 

  23. C. Christov, CALPHAD 35, 42 (2011).

    Article  CAS  Google Scholar 

  24. C. Christov, J. Chem. Thermodyn. 43, 344 (2011).

    Article  CAS  Google Scholar 

  25. C. Christov, CALPHAD 36, 71 (2012).

    Article  CAS  Google Scholar 

  26. C. Christov, J. Chem. Thermodyn. 47, 335 (2012).

    Article  CAS  Google Scholar 

  27. C. Christov, J. Chem. Thermodyn. 55, 7 (2012).

    Article  CAS  Google Scholar 

  28. S. H. Sang, H. A. Yin, S. J. Ni, and C. J. Zhang, J. Chengdu Univ. Tech. (Sci. Technol. Ed.) 33, 414 (2006).

    CAS  Google Scholar 

  29. X. Y. Zhao, S. H. Sang, and M. L. Sun, J. Salt Lake Res. 19, 35 (2011).

    Google Scholar 

  30. S. H. Sang, T. Li, and R. Z. Cui, J. Salt Lake Res. 12, 29 (2013).

    Google Scholar 

  31. R. Z. Cui, S. H. Sang, Y. X. Hu, and J. W. Hu, Acta Geol. Sin. 87, 1668 (2014).

    Article  Google Scholar 

  32. Z. L. Zhang, S. H. Sang, M. Li, and C. H. Hou, Chem. Eng. (China) 37, 45 (2009).

    Google Scholar 

  33. F. M. Hu, S. H. Sang, Y. G. Zhang, and J. J. Zhang, J. Salt Chem. Ind. 41, 12 (2012).

    CAS  Google Scholar 

  34. R. Z. Cui, S. H. Sang, D. W. Li, and Q. Z. Liu, CALPHAD 49, 120 (2015).

    Article  CAS  Google Scholar 

  35. R. Z. Cui, S. H. Sang, and Q. Liu, J. Chem. Eng. Data 61, 444 (2016).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Hua Sang.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, RZ., Zhang, TT., Wang, W. et al. Solid-liquid equilibria in the ternary system NaBr–KBr–H2O at 398 K. Russ. J. Phys. Chem. 91, 1775–1780 (2017). https://doi.org/10.1134/S0036024417090278

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024417090278

Keywords

Navigation