Skip to main content
Log in

Thermodynamic properties of alloys of the binary Sb–Yb system

  • Chemical Thermodynamics and Thermochemistry
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Mixing enthalpies of melts of the binary Sb–Yb system have been determined for the first time in the ranges 0 < x Yb < 0.155 at 960–1030 K and 0.89 < x Yb < 1 at 1140 K. It has been found that the melts form with great exothermic effects, and the partial enthalpies of the components at infinite dilution are: \(\Delta \bar H_{Sb}^\infty \) =–260, \(\Delta \bar H_{Sb}^\infty \) =–205 kJ/mol. An ideal associated solution model has been selected to describe the temperature and concentration dependences of thermodynamic properties of the melts, and the parameters of the model have been optimized through self-consistent analysis of the available data on the phase diagram. The model description allows to calculate the Gibbs energies and entropies of mixing of the melts, the activities of the components and the molar fractions of the associates, and the enthalpies and entropies of formation of the solid phases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Y. Chan, M. M. Olmstead, and S. M. Kauzlarich, Chem. Mater. 10, 3583 (1998).

    Article  CAS  Google Scholar 

  2. I. R. Fisher, T. A. Wiener, S. L. Bud’ko, and P. C. Canfield, Phys. Rev. B 59, 13829 (1999).

    Article  CAS  Google Scholar 

  3. S. R. Brown, S. M. Kauzlarich, F. Gascoin, and G. J. Snyder, Chem. Mater. 18, 1873 (2006).

    Article  CAS  Google Scholar 

  4. J. N. Pratt and K. S. Chua, Final Report No. 2027 (Dept. Phys. Metall. Sci. Mater., Univ. Birmingham, UK, 1970).

    Google Scholar 

  5. F. R. De Boer, R. Boom, W. C. M. Mattens, et al., Cohesion in Metals, Transition Metal Alloys (North-Holland, Amsterdam, 1988).

    Google Scholar 

  6. C. Colinet, A. Pasturel, A. Percheron-Guegan, and J. C. Achard, J. Less-Common Met. 102, 167 (1984); J. Less-Common Met. 102, 239 (1984).

    Article  CAS  Google Scholar 

  7. G. Borzone, A. Borsese, A. Saccone, and R. Ferro, J. Less-Common Met. 65, 253 (1979).

    Article  CAS  Google Scholar 

  8. A. Borsese, G. Borzone, D. Mazzone, and R. Ferro, J. Less-Common Met. 79, 57 (1981).

    Article  CAS  Google Scholar 

  9. G. Borzone, A. Borsese, G. Zanicchi, and R. Ferro, J. Therm. Anal. 25, 433 (1982).

    Article  CAS  Google Scholar 

  10. A. Borsese, R. Ferro, R. Capelli, and S. Delfino, J. Less-Common Met. 55, 77 (1977).

    Article  CAS  Google Scholar 

  11. G. Borzone, A. Borsese, S. Delfino, and R. Ferro, Zeitschr. Metallk. 76, 208 (1985).

    CAS  Google Scholar 

  12. G. Sh. Viksman and S. P. Gordienko, Izv. Akad. Nauk SSSR, Neorg. Mater. 20, 1441 (1984).

    CAS  Google Scholar 

  13. V. I. Goryacheva, A. V. Nikol’skaya, and Ya. I. Gerasimov, Dokl. Akad. Nauk SSSR 197, 389 (1971).

    CAS  Google Scholar 

  14. G. Borzone, M. L. Fornasini, N. Parodi, and R. Ferro, Intermetallics 8, 189 (2000).

    Article  CAS  Google Scholar 

  15. R. Ferro, G. Borzone, and G. Cacciamani, Thermochim. Acta 129, 99 (1988).

    Article  CAS  Google Scholar 

  16. V. I. Goryacheva, Ya. I. Gerasimov, and V. P. Vasil’ev, Zh. Fiz. Khim. 55, 1080 (1981).

    CAS  Google Scholar 

  17. G. Cacciamani, G. Borzone, N. Parodi, and R. Ferro, Zeitschr. Metallk. 87, 562 (1996).

    CAS  Google Scholar 

  18. K. S. Chua and J. N. Pratt, Thermochim. Acta 8, 409 (1974).

    Article  CAS  Google Scholar 

  19. Ya. I. Gerasimov, V. I. Goryacheva, and V. P. Vasil’ev, Dokl. Akad. Nauk SSSR 247, 135 (1979).

    CAS  Google Scholar 

  20. V. D. Abulkhaev, Inorg. Mater. 35, 431 (1999).

    CAS  Google Scholar 

  21. H. Okamoto, J. Phase Equilib. 29, 473 (2008).

    Article  CAS  Google Scholar 

  22. X. J. Liu, S. X. Gan, Z. S. Li, et al., CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 37, 132 (2012).

    Article  Google Scholar 

  23. M. Ivanov, V. Berezutski, and N. Usenko, J. Mater. Res. 102, 277 (2011).

    CAS  Google Scholar 

  24. A. T. Dinsdale, CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 15, 319 (1991).

    Article  Google Scholar 

  25. M. I. Ivanov, V. V. Berezuts’kii, M. O. Shevchenko, et al., Dopov. NAN Ukr., No. 8, 90 (2013).

    Google Scholar 

  26. V. G. Kudin, M. A. Shevchenko, I. V. Mateiko, and V. S. Sudavtsova, Zh. Fiz. Khim. 87, 364 (2013).

    Google Scholar 

  27. V. S. Sudavtsova, M. I. Ivanov, V. V. Berezutskii, et al., Zh. Fiz. Khim. 86, 1311 (2012).

    Google Scholar 

  28. M. A. Shevchenko, V. G. Kudin, N. G. Kobylinskaya, and V. S. Sudavtsova, Ukr. Khim. Zh. 78 (6), 96 (2012).

    CAS  Google Scholar 

  29. M. A. Shevchenko, M. I. Ivanov, V. V. Berezutskii, and V. S. Sudavtsova, Russ. J. Phys. Chem. A 90, 723 (2016).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. S. Sudavtsova.

Additional information

Original Russian Text © V.S. Sudavtsova, M.A. Shevchenko, M.I. Ivanov, V.V. Berezutskii, V.G. Kudin, K.Yu. Pastushenko, 2017, published in Zhurnal Fizicheskoi Khimii, 2017, Vol. 91, No. 7, pp. 1102–1110.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sudavtsova, V.S., Shevchenko, M.A., Ivanov, M.I. et al. Thermodynamic properties of alloys of the binary Sb–Yb system. Russ. J. Phys. Chem. 91, 1174–1182 (2017). https://doi.org/10.1134/S0036024417070287

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024417070287

Keywords

Navigation