Skip to main content
Log in

Catalytic properties of the VO х /Ce0.46Zr0.54O2 oxide system in the oxidative dehydrogenation of propane

  • Chemical Kinetics and Catalysis
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Ce0.46Zr0.54O2 solid solution prepared using a cellulose template was employed as a carrier for vanadium catalysts of the oxidative dehydrogenation of propane. The properties of VO х /Ce0.46Zr0.54O2 catalyst (5 wt % vanadium) are compared with the properties of the neat support. The carrier and catalyst are studied by means of BET, SEM, DTA, XRD, and Raman spectroscopy. It is shown that the CeVO4 phase responsible for the ODH process is formed upon interaction between vanadate ions and cerium ions on the surface of the solid solution. The catalytic properties of the catalyst and the support are studied in the propane oxidation reaction at temperatures of 450 and 500°C with pulse feeding of the reagent. It is found that the complete oxidation of propane occurs on the support with formation of CO2 and H2O. Three products (propene, CO2, and H2O) form in the presence of the vanadium catalyst. It is suggested that there are two types of catalytic centers on the catalyst’s surface. It is concluded that the centers responsible for the complete oxidation of propane are concentrated mainly on the carrier, while the centers responsible for propane ODH are on the CeVO4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Chao and E. Ruckenstein, Catal. Lett. 94, 217 (2004).

    Article  CAS  Google Scholar 

  2. R. P. Singh, M. A. Banares, and G. Deo, J. Catal. 233, 388 (2005).

    Article  CAS  Google Scholar 

  3. O. Ovsitser, R. Schomaecker, E. V. Kondratenko, et al., Catal. Today 192, 16 (2012).

    Article  CAS  Google Scholar 

  4. K. Fukudome, N. Ikenaga, T. Miyake, and T. Suzuki, Catal. Sci. Technol. 1, 987 (2011).

    Article  CAS  Google Scholar 

  5. K. Fukudome, N. Ikenaga, T. Miyake, and T. Suzuki, Catal. Today 203, 10 (2013).

    Article  CAS  Google Scholar 

  6. I. Rossetti, L. Fabbrini, N. Ballarini, et al., Catal. Today 141, 271 (2009).

    Article  CAS  Google Scholar 

  7. E. V. Kondratenko, M. Cherian, M. Baerns, et al., J. Catal. 234, 131 (2005).

    Article  CAS  Google Scholar 

  8. K. Nakagawa, C. Kajita, N. Ikenaga, et al., Catal. Today 84, 149 (1998).

    Article  Google Scholar 

  9. F. Luo, C. J. Jia, R. Liu, et al., Mater. Res. Bull. 48, 1122 (2013).

    Article  CAS  Google Scholar 

  10. A. Trovarelli, Catal. Rev.-Sci. Eng. 38, 439 (1996).

    Article  CAS  Google Scholar 

  11. J. Beckers and G. Rothenberg, Green Chem. 12, 939 (2010).

    Article  CAS  Google Scholar 

  12. W. Daniell, A. Ponchel, S. Kuba, et al., Top. Catal. 20, 65 (2002).

    Article  CAS  Google Scholar 

  13. M. A. Banares, X. Gao, J. L. G. Fierro, and I. E. Wachs, Stud. Surf. Sci. Catal. 110, 295 (1997).

    Article  CAS  Google Scholar 

  14. M. V. Martinez-Huerta, J. M. Coronado, M. Fernandez-Garcia, et al., J. Catal. 225, 240 (2004).

    Article  CAS  Google Scholar 

  15. M. V. Martinez-Huerta, G. Deo, J. L. G. Fierro, and M. A. Banares, J. Phys. Chem. C 111, 18708 (2007).

    Article  CAS  Google Scholar 

  16. Y. Peng, C. Wang, and J. Li, Appl. Catal. B: Environ. 144, 538 (2014).

    Article  CAS  Google Scholar 

  17. Z. Wu, A. J. Rondinone, I. N. Ivanov, and S. H. Overbury, J. Phys. Chem. C 115, 25368 (2011).

  18. G. Vlaic, P. Fornasiero, S. Geremia, et al., J. Catal. 168, 386 (1997).

    Article  CAS  Google Scholar 

  19. G. Colon, M. Pijolat, F. Valdivieso, et al., J. Chem. Soc., Faraday Trans. 94, 3717 (1998).

    Article  CAS  Google Scholar 

  20. B. M. Reddy and A. Khan, Langmuir 19, 3025 (2003).

    Article  CAS  Google Scholar 

  21. A. Adamskia, B. Gila, and Z. Sojka, Catal. Today 137, 292 (2008).

    Article  Google Scholar 

  22. G. C. Bond and S. F. Tahir, Appl. Catal. 71, 1 (1991).

    Article  CAS  Google Scholar 

  23. B. M. Reddy, B. Chowdhary, I. Ganesh, et al., J. Phys. Chem. B 102, 10176 (1998).

    Article  CAS  Google Scholar 

  24. G. Raju, B. M. Reddy, and S. E. Park, J. CO2 Util. 5, 41 (2014).

    Article  CAS  Google Scholar 

  25. F. Luo, C. J. Jia, R. Liu, L. D. Sun, and C. H. Yan, Mater. Res. Bull. 48, 1122 (2013).

    Article  CAS  Google Scholar 

  26. A. I. Kozlov, D. H. Kim, A. Yezerets, et al., J. Catal. 209, 417 (2002).

    Article  CAS  Google Scholar 

  27. B. K. Vua, E. W. Shina, J. M. Hab, et al., Appl. Catal. A: Gen. 443–444, 59 (2012).

  28. G. Vlaic, R. D. Monte, P. Fornasiero, et al., J. Catal. 182, 378 (1999).

    Article  CAS  Google Scholar 

  29. L. Cao, L. Pan, C. Ni, Z. Yuana, S. Wang, Fuel Process. Technol. 91, 306 (2010).

    Article  CAS  Google Scholar 

  30. B. Rivas, R. Lopez-Fonseca, M. A. Gutierrez-Ortiz, and J. I. Gutierrez-Ortiz, Appl. Catal. B: Environ. 101, 317 (2011).

    Article  Google Scholar 

  31. J. Li, Q. Wanga, B. Zhao, and R. Zhou, Fuel 92, 360 (2012).

    Article  CAS  Google Scholar 

  32. A. Adamskia, B. Gil, and Z. Sojka, Catal. Today 137, 292 (2008).

    Article  Google Scholar 

  33. S. Sankar, R. Putluru, A. Riisager, and R. Fehrmann, Catal. Lett. 133, 370 (2009).

    Article  Google Scholar 

  34. G. I. Panov, K. A. Dubkov, and E. V. Starokon, Catal. Today 117, 148 (2006).

    Article  CAS  Google Scholar 

  35. C. Doornkamp and V. Ponec, J. Mol. Catal. A 162, 19 (2000).

    Article  CAS  Google Scholar 

  36. X. Rozanska, E. V. Kondratenko, and J. Sauer, J. Catal. 256, 84 (2008).

    Article  CAS  Google Scholar 

  37. J. M. Herrmann, Catal. Today 112, 73 (2006).

    Article  CAS  Google Scholar 

  38. K. Chen, A. T. Bell, and E. Iglesia, J. Catal. 209, 35 (2002).

    Article  CAS  Google Scholar 

  39. G. Gayko, D. Wolf, E. V. Kondratenko, and M. Baerns, J. Catal. 178, 441 (1998).

    Article  CAS  Google Scholar 

  40. E. V. Kondratenko, D. Wolf, and M. Baerns, Catal. Lett. 58, 217 (1999).

    Article  CAS  Google Scholar 

  41. H. He, H. X. Dai, K. W. Wong, and C. T. Au, Appl. Catal. A: Gen. 251, 61 (2003).

    Article  CAS  Google Scholar 

  42. A. Martinez-Arias, M. Fernadez-Garcia, C. Belver, et al., Catal. Lett. 65, 197 (2000).

    Article  CAS  Google Scholar 

  43. S. Crapanzano, I. V. Babich, and L. Lefferts, Appl. Catal. A: Gen. 378, 144 (2010).

    Article  CAS  Google Scholar 

  44. E. Aneggi, M. Boaro, C. Leitenburg, et al., Catal. Today 112, 94 (2006).

    Article  CAS  Google Scholar 

  45. J. R. Kim, W. J. Myeong, and S. K. Ihm, J. Catal. 263, 123 (2009).

    Article  CAS  Google Scholar 

  46. Y. Peng, C. Wang, and J. Li, Appl. Catal. B: Environ. 144, 538 (2014).

    Article  CAS  Google Scholar 

  47. Z. Wu, A. J. Rondinone, I. N. Ivanov, and S. H. Overbury, J. Phys. Chem. C 115, 25368 (2011).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. O. Turakulova.

Additional information

Original Russian Text © A.O. Turakulova, A.N. Kharlanov, A.V. Levanov, O.Ya. Isaikina, V.V. Lunin, 2017, published in Zhurnal Fizicheskoi Khimii, 2017, Vol. 91, No. 1, pp. 21–29.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Turakulova, A.O., Kharlanov, A.N., Levanov, A.V. et al. Catalytic properties of the VO х /Ce0.46Zr0.54O2 oxide system in the oxidative dehydrogenation of propane. Russ. J. Phys. Chem. 91, 17–25 (2017). https://doi.org/10.1134/S0036024417010307

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024417010307

Keywords

Navigation