Skip to main content
Log in

Hydrogen adsorption in the series of carbon nanostructures: Graphenes–graphene nanotubes–nanocrystallites

  • Physical Chemistry of Nanoclusters and Nanomaterials
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

A comparative analysis of hydrogen absorption capability is performed for the first time for three types of carbon nanostructures: graphenes, oriented carbon nanotubes with graphene walls (OCNTGs), and pyrocarbon nanocrystallites (PCNs) synthesized in the pores of TRUMEM ultrafiltration membranes with mean diameters (D m) of 50 and 90 nm, using methane as the pyrolized gas. The morphology of the carbon nanostructures is studied by means of powder X-ray diffraction, X-ray photoelectron spectroscopy (XPS), Raman spectroscopy, and transmission electron microscopy (TEM). Hydrogen adsorption is investigated via thermogravimetric analysis (TGA) in combination with mass-spectrometry. It is shown that only OCNTGs can adsorb and store hydrogen, the desorption of which under atmospheric pressure occurs at a temperature of around 175°C. Hydrogen adsorption by OCNTGs is quantitatively determined and found to be about 1.5% of their mass. Applying certain assumptions, the relationship between the mass of carbon required for the formation of single-wall OCNTGs in membrane pores and the surface area of pores is established. Numerical factor Ψ = m dep/m calc, where m dep is the actual mass of carbon deposited upon the formation of OCNTGs and mcalc is the calculated mass of carbon necessary for the formation of OCNTGs is introduced. It is found that the dependence of specific hydrogen adsorption on the magnitude of the factor has a maximum at Ψ = 1.2, and OCNTGs can adsorb and store hydrogen in the interval 0.4 to 0.6 < Ψ < 1.5 to 1.7. Possible mechanisms of hydrogen adsorption and its relationship to the structure of carbon nanoformations are examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Sun, R. Li, B. Stansfield, J.-P. Dodelet, et al., Carbon 45, 732 (2007).

    Article  CAS  Google Scholar 

  2. D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, et al., Science 323 5914, 610 (2009).

    Article  CAS  Google Scholar 

  3. A. Savchenco, Science 323 5914, 589 (2009).

    Article  Google Scholar 

  4. L. Gao, X. Zhou, and Y. Ding, Chem. Phys. Lett. 434, 297 (2007).

    Article  CAS  Google Scholar 

  5. N. N. Klimov, S. Jung, N. B. Zhitenev, et al., Science 336 6088, 1557 (2012).

    Article  CAS  Google Scholar 

  6. H. Yang, J. Heo, S. Park, et al., Science 336 6085, 1140 (2012).

    Article  CAS  Google Scholar 

  7. L. Britnell, A. Mishchenko, T. Georgiou, et al., Science 335 6071, 947 (2012).

    Article  CAS  Google Scholar 

  8. J. Simon and M. Greiner, Nature 483 7389, 282 (2012).

    Article  CAS  Google Scholar 

  9. C. F. Chen, C. H. Park, J. Horng, et al., Nature 471 7340, 617 (2011).

    Article  CAS  Google Scholar 

  10. A. K. Ray, R. K. Sahu, V. Rajinikanth, et al., Carbon 50, 4123 (2012).

    Article  CAS  Google Scholar 

  11. H. Hao, P. Liu, J. Tang, et al., Carbon 50, 4103 (2012).

    Article  Google Scholar 

  12. C. Zhang, J. Li, E. Liu, et al., Carbon 50, 3513 (2012).

    Article  CAS  Google Scholar 

  13. C. Wu, F. Li, Y. Zhang, et al., Carbon 50, 3622 (2012).

    Article  CAS  Google Scholar 

  14. A. Hagen, G. Moos, V. Talalaev, et al., Appl. Phys. A 78, 1137 (2004).

    Article  CAS  Google Scholar 

  15. N. Behabtu, C. C. Young, D. E. Tsentalovich, et al., Science 339 6116, 182 (2013).

    Article  CAS  Google Scholar 

  16. J. Baringhaus, F. Edler, C. Tegenkamp, et al., Nature 506 7488, 349 (2014).

    Article  CAS  Google Scholar 

  17. A. F. Young, J. D. Sanchez-Yamagishi, B. Hunt, et al., Nature 505 7484, 528 (2014).

    Article  CAS  Google Scholar 

  18. N. A. Buang, F. Ismail, and M. Z. Othman, Fullerenes, Nanotubes, Carbon Nanostruct. 22, 307 (2014).

    Article  CAS  Google Scholar 

  19. A. P. Soldatov and O. P. Parenago, Dokl. Chem. 421, 187 (2008).

    Article  CAS  Google Scholar 

  20. A. P. Soldatov, M. V. Tsodikov, V. Yu. Bichkov, et al., Int. J. Hydrogen Energy 36, 1264 (2011).

    Article  CAS  Google Scholar 

  21. A. P. Soldatov, M. V. Tsodikov, O. P. Parenago, and V. V. Teplyakov, Russ. J. Phys. Chem. A 84, 2102 (2010).

    Article  CAS  Google Scholar 

  22. A. P. Soldatov, V. V. Berezkin, I. V. Gontar’, G. N. Evtyugina, and O. P. Parenago, Russ. J. Phys. Chem. A 88, 990 (2008).

    Article  Google Scholar 

  23. E. I. Shkol’nikov, I. B. Elkina, and V. V. Volkov, RF Patent No. 2141642 (1999).

    Google Scholar 

  24. A. P. Soldatov, I. A. Rodionova, and O. P. Parenago, Russ. J. Phys. Chem. A 80, 418 (2006).

    Article  CAS  Google Scholar 

  25. M. Shiraishi, T. Takenobu, H. Kataura, et al., Appl. Phys. A 78, 947 (2004).

    Article  CAS  Google Scholar 

  26. G. Q. Ning, F. Wei, G. H. Luo, et al., Appl. Phys. A 78, 955 (2004).

    Article  CAS  Google Scholar 

  27. E. Poirier, R. Chahine, P. Benard, et al., Appl. Phys. A 78, 961 (2004).

    Article  CAS  Google Scholar 

  28. C. Liu, Y. Y. Fan, M. Liu, et al., Science 286, 1127 (1999).

    Article  CAS  Google Scholar 

  29. Y. M. Cheng, Q. Y. Yang, and C. Liu, Carbon 39, 1447 (2001).

    Article  CAS  Google Scholar 

  30. H-J. Shin, S. Clair, Y. Kim, et al., Nature Nanotechnol. 4, 567 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. P. Soldatov.

Additional information

Original Russian Text © A.P. Soldatov, A.N. Kirichenko, E.V. Tat’yanin, 2016, published in Zhurnal Fizicheskoi Khimii, 2016, Vol. 90, No. 7, pp. 1038–1046.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soldatov, A.P., Kirichenko, A.N. & Tat’yanin, E.V. Hydrogen adsorption in the series of carbon nanostructures: Graphenes–graphene nanotubes–nanocrystallites. Russ. J. Phys. Chem. 90, 1419–1426 (2016). https://doi.org/10.1134/S0036024416070293

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024416070293

Keywords

Navigation