Skip to main content
Log in

The Crystal-Chemical Role of Alkylmalonate Ions in the Structure of Coordination Polymers

  • Structure of Matter and Quantum Chemistry
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Alkyl-substituted (methyl, ethyl, diethyl) malonate ions (Rmal2−) are found to display 13 topologically different types of coordination with respect to d- or f-metals A. The factors that cause Rmal2− ions to choose one possible coordination are discussed; valence angle C—C—C in a malonate ion lies within 102°–119° range and depends linearly on the dihedral angle between the planes of two carboxyl groups. When coordinated with metal atom A, alkyl-substituted malonate ions are found to produce six-membered metallocycles of bath conformation. It is established that increasing the volume of R substituents in Rmal2− ions strengthens the repulsion among carboxyl groups and alkyl substituents and reduces the C—C—C angle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Dey, T. Kundu, B. P. Biswal, et al., Acta Crystallogr. 70, 3 (2014).

    CAS  Google Scholar 

  2. B.-H. Ye, M.-L. Tong, and X.-M. Chen, Coord. Chem. Rev. 249, 545 (2005).

    Article  CAS  Google Scholar 

  3. L. A. Borkowski and C. L. Cahill, Cryst. Growth Des. 6, 2241 (2006).

    Article  CAS  Google Scholar 

  4. R. J. Kuppler, D. J. Timmons, Qian-Rong Fang, et al., Coord. Chem. Rev. 253, 3042 (2009).

    Article  CAS  Google Scholar 

  5. A. D. Pomogailo and G. I. Dzhardimalieva, Monomeric and Polymeric Metal Carboxylates (Fizmatlit, Moscow, 2009) [in Russian].

    Google Scholar 

  6. S. Qiu and G. Zhu, Coord. Chem. Rev. 253, 2891 (2009).

    Article  CAS  Google Scholar 

  7. A. T. Kerr and C. L. Cahill, Cryst. Growth Des. 11, 5634 (2011).

    Article  CAS  Google Scholar 

  8. M. P. Yutkin, D. N. Dybtsev, and V. P. Fedin, Russ. Chem. Rev. 80, 1009 (2011).

    Article  CAS  Google Scholar 

  9. G. Férey, Chem. Soc. Rev. 37, 191 (2008).

    Article  Google Scholar 

  10. V. N. Serezhkin, Ya. A. Medvedkov, L. B. Serezhkina, and D. V. Pushkin, Russ. J. Phys. Chem. A 89, 1018 (2015).

    Article  CAS  Google Scholar 

  11. J. M. Herbert and J. V. Ortiz, J. Phys. Chem. A 104, 11786 (2000).

    Article  CAS  Google Scholar 

  12. D. W. Deerfield II and L. G. Pedersen, J. Mol. Struct. (THEOCHEM) 368, 163 (1996).

    Article  CAS  Google Scholar 

  13. D. Ajó, I. Fragalá, G. Grannozi, and E. Tondello, J. Mol. Struct. 38, 245 (1977).

    Article  Google Scholar 

  14. M. Déniz, I. Hernández-Rodríguez, J. Pasán, et al., Cryst. Eng. Commun., No. 13, 2766 (2014).

    Article  Google Scholar 

  15. Y. Zhang, D. Collison, F. R. Livens, et al., Polyhedron 21, 81 (2002).

    Article  CAS  Google Scholar 

  16. Y. Zhang, D. Collison, F. R. Livens, et al., Polyhedron 21, 69 (2002).

    Article  CAS  Google Scholar 

  17. P. Manochitra, N. Manikandan, S. Murugavel, et al., Acta Crystallogr. E 68, m884 (2012).

    Article  Google Scholar 

  18. S. Pérez-Yáñez, O. Castillo, J. Cepeda, et al., Eur. J. Inorg. Chem. 26, 3889 (2009).

    Article  Google Scholar 

  19. M. Déniz, J. Pasán, J. Ferrando-Soria, et al., Inorg. Chem. 50, 10765 (2011).

    Article  Google Scholar 

  20. M.-L. Guo and C.-H. Guo, Acta Crystallogr. C 65, m266 (2009).

    Article  Google Scholar 

  21. Y. Zhang, D. Collison, F. R. Livens, et al., Polyhedron 14, 1757 (2000).

    Article  Google Scholar 

  22. E. N. Zorina, N. V. Zauzolkova, A. A. Sidorov, et al., Inorg. Chim. Acta 396, 108 (2013).

    Article  CAS  Google Scholar 

  23. G. A. Farnum, J. H. Nettleman, and R. L. LaDuca, Cryst. Eng. Comm, No. 12, 888 (2010).

    Article  CAS  Google Scholar 

  24. Cambridge Structural Database System, Version 5.35 (Crystallogr. Data Centre, Cambridge, 2014).

  25. V. N. Serezhkin, L. B. Serezhkina, A. P. Shevchenko, and D. V. Pushkin, Russ. J. Phys. Chem. A 79, 918 (2005).

    CAS  Google Scholar 

  26. V. N. Serezhkin, Yu. N. Mikhailov, and Yu. A. Buslaev, Russ. J. Inorg. Chem. 42, 1871 (1997).

    Google Scholar 

  27. M.-L. Guo and Y.-N. Zhao, Acta Crystallogr. C 62, m563 (2006).

    Article  Google Scholar 

  28. J. Pasán, J. Sanchiz, L. Canadillas-Delgado, et al., Polyhedron 28, 1802 (2009).

    Article  Google Scholar 

  29. D. Cremer and J. A. Pople, J. Am. Chem. Soc. 96, 1354 (1975).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. N. Serezhkin.

Additional information

Original Russian Text © Ya.A. Medvedkov, L.B. Serezhkina, V.N. Serezhkin, 2016, published in Zhurnal Fizicheskoi Khimii, 2016, Vol. 90, No. 4, pp. 576–582.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medvedkov, Y.A., Serezhkina, L.B. & Serezhkin, V.N. The Crystal-Chemical Role of Alkylmalonate Ions in the Structure of Coordination Polymers. Russ. J. Phys. Chem. 90, 803–808 (2016). https://doi.org/10.1134/S0036024416040191

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024416040191

Keywords

Navigation