Skip to main content
Log in

Zeta Potential, Size, and Semiconductor Properties of Zinc Sulfide Nanoparticles in a Stable Aqueous Colloid Solution

  • Physical Chemistry of Surface Phenomena
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

A stable aqueous colloid solution of zinc sulfide (ZnS) nanoparticles was obtained by chemical condensation using ethylenediaminetetraacetic acid disodium salt. The mechanism of prolonged aggregative stability of solution at pH 7–8 with ~7-nm nanoparticles was determined as a result of the zeta potential measurements by dynamic light scattering. The blue and red shifts of the fundamental absorption edge of zinc sulfide semiconductor nanoparticles associated with the small size of nanoparticles and the defective state of their surface were found by optical spectrophotometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. E. Brus, J. Phys. Chem. 90, 2555 (1986).

    Article  CAS  Google Scholar 

  2. S. V. Rempel, A. A. Razvodov, M. C. Nebogatikov, E. V. Shishkina, V. Ya. Shur, and A. A. Rempel, Phys. Solid State 55, 624 (2013).

    Article  CAS  Google Scholar 

  3. M. Kanemoto, H. Hosokawa, Y. Wada, et al., J. Chem. Soc. 92, 2401 (1996).

    CAS  Google Scholar 

  4. A. A. Rempel, Russ. Chem. Bull. 62, 857 (2013).

    Article  CAS  Google Scholar 

  5. N. S. Kozhevnikova, A. S. Vorokh, and A. A. Uritskaya, Russ. Chem. Rev. 84, 225 (2015).

    Article  Google Scholar 

  6. L. Hu, M. Chen, W. Shan, et al., Adv. Mater. 24, 5872 (2012).

    Article  CAS  Google Scholar 

  7. I. O. Oladeji and L. Chow, Thin Solid Films 474, 77 (2005).

    Article  CAS  Google Scholar 

  8. M. Geszke, M. Murias, L. Balan, et al., Acta Biomater. 7, 1327 (2011).

    Article  CAS  Google Scholar 

  9. M. Mohagheghpoura, M. Rabieea, F. Moztarzadeha, et al., Mater. Sci. Eng. C 29, 1842 (2009).

    Article  Google Scholar 

  10. T. Lei, H. Cong, P. Rongfei, et al., Biosens. Bioelectron. 61, 506 (2014).

    Article  Google Scholar 

  11. B. Barman and K. C. Sarma, Chalcogenide Lett. 8, 171 (2011).

    CAS  Google Scholar 

  12. R. Shahid, M. S. Toprak, H. Soliman, and M. Muhammed, Centr. Eur. J. Chem. 10, 54 (2012).

    Article  CAS  Google Scholar 

  13. Xiao Qi and Xiao Chong, Appl. Surf. Sci. 254, 6432 (2008).

    Article  Google Scholar 

  14. H. Li, W. Y. Shih, and W.-H. Shih, Ind. Eng. Chem. Res. 49, 578 (2010).

    Article  CAS  Google Scholar 

  15. N. S. Kozhevnikova, A. S. Vorokh, and A. A. Rempel, Russ. J. Gen. Chem. 80, 391 (2010).

    Article  CAS  Google Scholar 

  16. N. S. Kozhevnikova, A. M. Demin, V. P. Krasnov, and A. A. Rempel, Dokl. Chem. 452, 215 (2013).

    Article  CAS  Google Scholar 

  17. S. I. Sadovnikov and A. I. Gusev, J. Alloys Compd. 586, 105 (2014).

    Article  CAS  Google Scholar 

  18. S. I. Sadovnikov, Yu. V. Kuznetsova, and A. A. Rempel, Inorg. Mater. 50, 969 (2014).

    Article  CAS  Google Scholar 

  19. S. I. Sadovnikov and A. A. Rempel, Inorg. Mater. 51, 759 (2015).

    Article  CAS  Google Scholar 

  20. N. M. Dyatlova, V. Ya. Temkina, and K. I. Popov, The Complexones and Metal Complexonates (Khimiya, Moscow, 1988) [in Russian].

    Google Scholar 

  21. F. Umland, A. Janssen, D. Thierig, and G. Wünsch, Theorie und praktische Anwendung von Komplexbildern (Akademische, Frankfurt-am-Main, 1971) [in German].

    Google Scholar 

  22. O. M. Petrukhin, Analytical Chemistry. Chemical Methods of Analysis (Khimiya, Moscow, 1993) [in Russian].

    Google Scholar 

  23. B. Nowack, Environ. Sci. Technol. 36, 4009 (2002).

    Article  CAS  Google Scholar 

  24. Y. F. Nicolau and J. C. Menard, J. Colloid Interface Sci. 148, 155 (1992).

    Article  Google Scholar 

  25. R. Williams and M. E. Labib, J. Colloid Interface Sci. 106, 251 (1985).

    Article  CAS  Google Scholar 

  26. Yu. V. Rabinovich, T. N. Kropacheva, M. V. Didik, and V. I. Kornev, Vestn. Udmurtsk. Univ., Fiz. Khim., No. 3, 19 (2013).

    Google Scholar 

  27. R. Williams, J. Chem. Phys. 32, 1505 (1960).

    Article  CAS  Google Scholar 

  28. D. W. Fuerstenau, Pure Appl. Chem 24, 135 (1970).

    Article  CAS  Google Scholar 

  29. J. Huang, L. Wang, K. Tang, et al., Adv. Mater. Res. 287–290, 2140 (2011).

    Article  Google Scholar 

  30. D. Kurbatov, A. Opanasyuk, S. Kshnyakina, et al., Rom. J. Phys. 55, 213 (2010).

    CAS  Google Scholar 

  31. N. A. Dhas, A. Zaban, and A. Gedanken, Chem. Mater. 11, 806 (1999).

    Article  CAS  Google Scholar 

  32. M. Tan, W. Cai, and L. Zhang, Appl. Phys. Lett. 71, 3697 (1997).

    Article  CAS  Google Scholar 

  33. Al. L. Efros and A. L. Efros, Sov. Phys. Semicond. 16, 772 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Kuznetsova.

Additional information

Original Russian Text © Yu.V. Kuznetsova, A.A. Kazantseva, A.A. Rempel, 2016, published in Zhurnal Fizicheskoi Khimii, 2016, Vol. 90, No. 4, pp. 625–630.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuznetsova, Y.V., Kazantseva, A.A. & Rempel, A.A. Zeta Potential, Size, and Semiconductor Properties of Zinc Sulfide Nanoparticles in a Stable Aqueous Colloid Solution. Russ. J. Phys. Chem. 90, 864–869 (2016). https://doi.org/10.1134/S0036024416040154

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024416040154

Keywords

Navigation