Skip to main content
Log in

Inhibiting the combustion of air–acetylene mixtures

  • Chemical Kinetics and Catalysis
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The effect propane, methane, and a mixture of 18 vol % С3Н6–40 vol % С3Н8–42 vol % С4Н10 have on the combustion of air–acetylene mixtures is investigated experimentally. The upper concentration limit of flame propagation, maximum explosion pressure, and maximum rate of rise of explosion pressure are determined. It is found that propane and a mixture of 18 vol % С3Н6–40 vol % С3Н8–42 vol % С4Н10 are strong inhibitors of combustion of acetylene in its concentration ranges of 2–8 vol %. The inhibition effect becomes weaker as the acetylene content in the mixture increases. It disappears completely at C2H2 concentrations exceeding 15 vol %. The above experimental findings are explained using the proposed scheme of acetylene oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Azatyan, E. D. Zamyshevskii, Yu. N. Shebeko, et al., Pozharovzryvobezopasn. 6 (1), 18 (1997).

    Google Scholar 

  2. V. V. Azatyan, Yu. N. Shebeko, S. N. Kopylov, and D. Yu. Shebeko, Pozharovzryvobezopasn. 9 (4), 9 (2000).

    Google Scholar 

  3. V. V. Azatyan, Yu. N. Shebeko, S. N. Kopylov, and V. I. Kalachev, Pozharovzryvobezopasn. 9 (5), 8 (2000).

    Google Scholar 

  4. B. A. Ivanov, Physics of Acetylene Explosion (Khimiya, Moscow, 1969), p. 180 [in Russian].

    Google Scholar 

  5. C. K. Westbrook, Combust. Flame 46, 191 (1982).

    Article  CAS  Google Scholar 

  6. Fire and Explosion Safety of Substances and Materials and the Means of Fire Control, The Handbook, Ed. by A. N. Baratov and A. Ya. Korol’chenko (Khimiya, Moscow, 1990), Vol. 1, p. 496; Vol. 2, p. 384 [in Russian].

  7. V. G. Knorre, M. S. Kopylov, and P. A. Tesner, Fiz. Goreniya Vzryva 13, 863 (1977).

    CAS  Google Scholar 

  8. C. J. Jachimowski, Combust. Flame 29, 55 (1977).

    Article  CAS  Google Scholar 

  9. V. Ya. Basevich, S. M. Kogarko, and V. S. Posvyanskii, Fiz. Goreniya Vzryva 12, 217 (1976).

    Google Scholar 

  10. B. Eiteneer and M. Frenklach, Int. J. Chem. Kinet. 35, 391 (2003).

    Article  CAS  Google Scholar 

  11. A. Laskin and H. Wang, Chem. Phys. Lett. 303, 43 (1999).

    Article  CAS  Google Scholar 

  12. G. L. Agafonov, V. N. Smirnov, and P. A. Vlasov, Combust. Sci. Technol. 184, 1838 (2012).

    Article  CAS  Google Scholar 

  13. G. L. Agafonov, I. V. Bilera, Yu. A. Kolbanovskii, et al., in Proceedings of the 24th International Colloquium on the Dynamics of Explosions and Reactive Systems, 2013, CD-ROM.

    Google Scholar 

  14. G. L. Agafonov, V. N. Smirnov, and P. A. Vlasov, Proc. Combust. Inst. 33, 625 (2011).

    Article  CAS  Google Scholar 

  15. V. I. Berezkin, Extended Abstract of Doctoral (Phys. Math.) Dissertation (Novgor. State Univ., Vel. Novgorod, 2009).

    Google Scholar 

  16. Gas–Phase Combustion Chemistry, Ed. by W. C. Gardiner, Jr. (Springer, Berlin, 1999; Mir, Moscow, 1988), p. 462.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. N. Kopylov.

Additional information

Original Russian Text © S.N. Kopylov, T.V. Gubina, 2016, published in Zhurnal Fizicheskoi Khimii, 2016, Vol. 90, No. 1, pp. 34–38.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kopylov, S.N., Gubina, T.V. Inhibiting the combustion of air–acetylene mixtures. Russ. J. Phys. Chem. 90, 43–47 (2016). https://doi.org/10.1134/S0036024416010155

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024416010155

Keywords

Navigation