Skip to main content
Log in

Measurements of solid-liquid equilibria in the ternary system NaCl-NaBr-H2O at 373 K

  • Chemical Thermodynamics and Thermochemistry
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Solid-liquid equilibria in the ternary system NaCl-NaBr-H2O at 373 K were measured by the isothermal dissolution equilibrium method. The solubilities of salts and densities of saturated solutions in the ternary system were determined experimentally. The equilibrium solid phases were also determined by chemical analysis and X-ray powder diffraction. Using the experimental data, the phase diagram of the ternary system was obtained, which comprise one univariant curve and one stationary phase in crystallization filed of Na (Cl, Br). The ternary system was solid solution type. Density values in the equilibrium solution increase with an increase of the sodium bromide concentration while decrease with an increase of the sodium chloride concentration. The relationship equation of equilibrium liquid phase and the solid phase composition data were fitted with a regression equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. T. Lin, Natural Gas Ind. 20, 9 (2000).

    Google Scholar 

  2. P. S. Song, J. Salt Lake Res. 8, 33 (2000).

    Google Scholar 

  3. B. Li, B. Sun, C. H. Fang, X. H. Du, and P. S. Song, Acta Chim Sin. 55, 545 (1997).

    CAS  Google Scholar 

  4. B. Sun, P. S. Song, and X. H. Du, J. Salt Lake Res. 2, 26 (1994).

    Google Scholar 

  5. S. Q. Wang and T. L. Deng, J. Chem. Thermodyn. 40, 1007 (2008).

    Article  CAS  Google Scholar 

  6. T. L. Deng and D. C. Li, Fluid Phase Equilib. 269, 98 (2008).

    Article  CAS  Google Scholar 

  7. F. J. Millero and R. H. Byrne, Geochim. Cosmochim. Acta 48, 1145 (1984).

    Article  CAS  Google Scholar 

  8. R. A. Easley and R. H. Byrne, Geochim. Cosmochim. Acta 75, 5638 (2011).

    Article  CAS  Google Scholar 

  9. N. Moller, Geochim. Cosmochim. Acta 52, 821 (1988).

    Article  CAS  Google Scholar 

  10. C. Christov and N. Moller, Geochim. Cosmochim. Acta 68, 1309 (2004).

    Article  CAS  Google Scholar 

  11. C. Christov and N. Moller, Geochim. Cosmochim. Acta 68, 3717 (2004).

    Article  CAS  Google Scholar 

  12. R. Felmy and J. H. Weare, Geochim. Cosmochim. Acta 50, 2271 (1986).

    Article  Google Scholar 

  13. C. Christov, Geochim. Cosmochim. Acta 71, 3557 (2007).

    Article  CAS  Google Scholar 

  14. C. Christov, J. Chem. Thermodyn. 43, 344 (2011).

    Article  CAS  Google Scholar 

  15. C. Christov, CALPHAD 36, 71 (2012).

    Article  CAS  Google Scholar 

  16. C. Christov, J. Chem. Thermodyn. 55, 7 (2012).

    Article  CAS  Google Scholar 

  17. C. Christov, CALPHAD 35, 42 (2011).

    Article  CAS  Google Scholar 

  18. C. Christov, J. Chem. Thermodyn. 47, 335 (2012).

    Article  CAS  Google Scholar 

  19. S. H. Sang, H. Zhang, S. Y. Zhong, J. W. Hu, and M. L. Sun, Fluid Phase Equilib. 361, 171 (2014).

    Article  CAS  Google Scholar 

  20. X. X. Zeng, S. H. Sang, D. Wang, and J. J. Zhang, Chem. Eng. 40, 32 (2012).

    CAS  Google Scholar 

  21. T. Li, S. H. Sang, R. Z. Cui, and K. J. Zhang, Chem. Res. Chin. Univ. 29, 311 (2013).

    Article  Google Scholar 

  22. S. H. Sang, R. Z. Cui, J. W. Hu, and D. Wang, J. Solution Chem. 42, 1633 (2013).

    Article  CAS  Google Scholar 

  23. Y. G. Zhang, S. H. Sang, K. J. Zhang, F. M. Hu, and R. Z. Cui, J. Salt Chem. Ind. 42, 12 (2013).

    Google Scholar 

  24. D. Wang, S. H. Sang, X. X. Zeng, and H. Y. Ning, Petrochem. Technol. 40, 285 (2011).

    Google Scholar 

  25. K. J. Zhang, S. H. Sang, T. Li, and R. Z. Cui, J. Chem. Eng. Data 58, 115 (2013).

    Article  Google Scholar 

  26. R. Z. Cui, S. H. Sang, and Y. X. Hu, J. Chem. Eng. Data 58, 477 (2013).

    Article  CAS  Google Scholar 

  27. A. E. Voloshin, S. I. Kovalev, E. B. Rudneva, and A. E. Glikin, J. Cryst. Growth 261, 105 (2004).

    Article  CAS  Google Scholar 

  28. C. V. Putnis and K. Mezger, Geochim. Cosmochim. Acta 68, 2839 (2004).

    Article  CAS  Google Scholar 

  29. A. Putnis and C. V. Putnis, J. Solid State Chem. 180, 1783 (2007).

    Article  CAS  Google Scholar 

  30. G. S. Durham, E. J. Rock, and S. F. Frayn, J. Am. Chem. Soc. 75, 5793 (1953).

    Article  Google Scholar 

  31. Y. B. Weng, Y. F. Wang, J. K. Wang, and Q. X. Yin, J. Chem. Eng. Chin. Univ. 21, 695 (2007).

    CAS  Google Scholar 

  32. Y. B. Weng, J. K. Wang, Q. X. Yin, and Y. F. Wang, Petrochem. Technol. 36, 358 (2007).

    CAS  Google Scholar 

  33. K. J. Zhang, S. H. Sang, D. Wang, and J. J. Zhang, J. Salt Chem. Ind. 35, 5 (2011).

    Google Scholar 

  34. D. Qiu and B. S. Ren, J. Hebei Univ. Tech. 32, 32 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shihua Sang.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sang, S., Hu, Y., Cui, R. et al. Measurements of solid-liquid equilibria in the ternary system NaCl-NaBr-H2O at 373 K. Russ. J. Phys. Chem. 89, 1152–1157 (2015). https://doi.org/10.1134/S0036024415070298

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024415070298

Keywords

Navigation