Skip to main content
Log in

Spectroscopic study of copper(II) complexes with carboxymethyl dextran and dextran sulfate

  • Structure of Matter and Quantum Chemistry
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The copper(II) ion complexes with carboxymethyl dextran (CMD) and dextran sulfate (DS) were studied by different methods. Content of copper was determined by atomic absorption spectroscopy. It was found that copper : ligand mole ratio (Cu : CMD) is 1 : 2, and Cu : DS is 1 : 1 by mole ratio method. Spectrophotometric parameters of synthesized compounds are characteristic for Cu(II) ion in octahedral (O h ) coordination. Analyzing of FTIR spectra in ν(C=O) vibration region has showed that -COOH group acts as bidentate ligand, while the compounds of Cu(II) with DS copper ions are in the region of four oxygen atoms of two adjacent sulfo groups. The presence of crystalline water was determined by isotopic substitution of H2O molecules with D2O molecules. Comparison of spectra recorded at room (RT) and liquid nitrogen temperature (LNT) has enabled detection bands of water molecules libration indicating that they are coordinated complementing coordination sphere of Cu(II) ions to six. The complexes are of Cu(II) · (CMD)2 · (H2O)2 or Cu(II) · DS · (H2O)2 type. The similarities of the γ(C-H) range in a part of FTIR spectra indicate that there is no difference in the conformation of the 4 C 1 glucopyranose (Glc) unit CMD and DS synthesized Cu(II) complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Iakovidis, I. Delimeris, and S.M. Piperakis, Mol. Biol. I 2011, 13 (2011).

    Google Scholar 

  2. Expert group on vitamines and minerals, EVM/99/19 (Secretariat, Government, London, 2002).

  3. J. E. Weder, C.T. Dillon, T. W. Hawoley, B. J. Kennedy, P. A. Lay, J. R. Biffin, H. L. Regtop, and N. M. Davies, Coord. Chem. Rev. 232, 95 (2002).

    Article  CAS  Google Scholar 

  4. M. Cakić, G. Nikolić, D. Cvetković, and Lj. Ilić, Kompleksi Fe(III) sa oligosaharidima-antianemici, Scientific Monography (Tehnološki fakultet, Leskovac, 2007) [in Serbian].

    Google Scholar 

  5. Ž. Mitić, M. Cakić, G. M. Nikolić, R. Nikolić, G. S. Nikolić, R. Pavlović, and E. Santaniello, Carbohyd. Res. 346, 434 (2011).

    Article  Google Scholar 

  6. M. Cakić, Ž. Mitić, G. Nikolić, Lj. Ilić, and G. Nikolić, Spectrosc. Int. J. 22, 177 (2008).

    Article  Google Scholar 

  7. G. Nikolić, M. Cakić, Ž. Mitić, and Lj. Ilić, Coord. Chem. 34, 322 (2008).

    Article  Google Scholar 

  8. G. Nikolić, M. Cakić, Ž. Mitić, Lj. Ilić, and P. Premović, Russ. J. Phys. Chem. A 83, 1520 (2009).

    Article  Google Scholar 

  9. I. M. Savić, G. S. Nikolić, I. M. Savić, and M. D. Cakić, Acta. Chromatogr. 22, 375 (2010).

    Article  Google Scholar 

  10. Ž. Mitić, G. S. Nikoloć, M. Cakić, R. Nikolić and Lj. Ilić, Russ. J. Phys. Chem. A 81, 1433 (2007).

    Article  Google Scholar 

  11. M. Cakić, Ž. Mitić, G. Nikolić, I. Savić, and I. Savić, Expert Opin. Drug. Discov. 8, 1253 (2013).

    Article  Google Scholar 

  12. J. Jezierska, B. N. Kolarz, B. Pawlow, and A. Trochimczuk, Reactive Function. Polym. 33, 127 (1997).

    Article  CAS  Google Scholar 

  13. A. Bartkowiak, J. Jezierska, and T. Spychaj, Pollym. Bull. 41, 199 (1998).

    Article  CAS  Google Scholar 

  14. I. Ajiboye and D. R. Brown, J. Chem. Soc. Faraday Trans. 86, 65 (1990).

    Article  CAS  Google Scholar 

  15. Ž. Mitić and G. S. Nikolić, in Proceedings of the World Congress of Pharmacy and Pharmaceutical Sciences, 68th International Congress of FIP, Basel CH (2008), IPS-P-054, p. 186.

    Google Scholar 

  16. A. B. P. Lever, Inorganic Electronic Spectroscopy (Elsevier Scientific, Amsterdam, 1984), pp. 94–114.

    Google Scholar 

  17. R. S. Drago, Physical Methods in Chemistry (W. B. Saunders, Philadelphia, 1977; Mir, Moscow, 1981).

    Google Scholar 

  18. Ž. Mitić, G. S. Nikolić, M. Cakić, P. Premović, and Lj. Ilić, J. Mol. Struct. 924, 264 (2009).

    Google Scholar 

  19. G. S. Nikolić, M. Cakić, Ž. Mitić, and Lj. Ilić, Russ. J. Coord. Chem. 34, 322 (2008).

    Article  Google Scholar 

  20. Ž. Mitić, G. S. Nikolić, M. Cakić, R. Nikolić, and Lj. Ilić, Russ. J. Phys. Chem. A 81, 1433 (2007).

    Article  Google Scholar 

  21. Ž. Mitić, G. S. Nikolić, and M. Cakić, in Proceedings of the Conference SPEC2008 on Shedding Light of Diseanse, Optical Diagnosis for the New Millennium, Sao Jose dos Campos, Sao Paulo, Brazil, 2008, pp. 86–88.

  22. P. D. Vasko, J. Blackwell, and J. L. Koening, Carbohydr. Res. 19, 297 (1971).

    Article  CAS  Google Scholar 

  23. S. A. Barker, E. Bourne, M. Stacey, and D. Whiffen, Chem. Ind., p. 196 (1953).

    Google Scholar 

  24. A. L. Daniel-da-Silva, S. Fateixa, A. J. Guiomar, B. F. O. Costa, N. J. O. Silva, T. Trindade, B. J. Goodfellow, and A. M. Gil, Nanotecnology 20, 355 (2009).

    Article  Google Scholar 

  25. J. Se-Hui, J. Jae-Wen, and H. Kwon-So, Biochim. J. 1, 213 (2007).

    Google Scholar 

  26. M. Cakić, G. Nikolić, Lj. Ilić, and S. Stanković, Chem. Ind. Chem. Eng. Q. 1, 74 (2005).

    Google Scholar 

  27. C. Mhner, M. D. Lechner, and E. Nordmeier, Carbohydr. Res. 331, 203 (2001).

    Article  Google Scholar 

  28. M. Liu, X. L. Yue, Z. F. Dai, Y. Ma, L. Xing, Z. Zha, S. Liu, and Y. Li, ACS Appl. Mater. Interfaces 1, 113 (2009).

    Article  CAS  Google Scholar 

  29. C. Dendrinom-Samara, G. Tsotson, L. V. Ekateriniadon, A. H. Kortsaris, C. P. Raptopaulon, A. Terzis, D. A. Kyriakidis, and D. P. Kessissoglon, J. Inorg. Biochem. 71, 171 (1998).

    Article  Google Scholar 

  30. M. A. Agotegeray, M. A. Boeris, and O. V. Quinzani, J. Brazil. Chem. Soc. 21, 2294 (2010).

    Article  Google Scholar 

  31. M. A. Agotegeray, M. Dennehy, M. A. Boeris, M. A. Grela, R. A. Burrow, and O. V. Quinzani, Polyhedron 34, 74 (2012).

    Article  Google Scholar 

  32. F. Dimiza, F. Perdih, V. Tangoulis, I. Turel, D. Kessissoglon, and G. Psomas, J. Inorg. Biochem. 105, 1060 (2011).

    Article  Google Scholar 

  33. B. Tita, M. Stefanesm, and D. Tita, Rev. Chim. 62, 1060 (2011).

    CAS  Google Scholar 

  34. V. Seidi, O. Knop, and M. Falk, Canad. J. Chem. 47, 1361 (1969).

    Article  Google Scholar 

  35. B. Berglund, J. Lindgren, and J. Tegenfeldt, J. Mol. Struct. 43, 179 (1978).

    Article  CAS  Google Scholar 

  36. Lj. Pejov, B. Šoptrajanov, and G. Jovanovski, J. Mol. Struct. 563–564, 321 (2001).

    Article  Google Scholar 

  37. B. Šoptrajanov, G. Jovanovski, and Lj. Pejov, J. Mol. Struct. 613, 47 (2002).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Glišić.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Glišić, S., Nikolić, G., Cakić, M. et al. Spectroscopic study of copper(II) complexes with carboxymethyl dextran and dextran sulfate. Russ. J. Phys. Chem. 89, 1254–1262 (2015). https://doi.org/10.1134/S0036024415070122

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024415070122

Keywords

Navigation