Skip to main content
Log in

Glass transition of an overcooled aluminum melt: A study in molecular dynamics

  • Structure of Matter and Quantum Chemistry
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The glass transition of an overcooled aluminum melt upon isobaric and isochoric cooling is studied by means of molecular dynamics. The embedded-atom potential is used to model the aluminum. Three criteria of glass transition (splitting of the second peak of the pair correlation function, an increase in the number of icosahedral clusters, and a change in the activation energy of self-diffusion) are considered. It is shown that the glass transition temperatures determined by these three criteria coincide within the error range. The dependence of the glass transition temperature on the cooling rate is determined from the modeling results and agrees with the Bartenev theoretical model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. N. Ryzhov, E. E. Tareyeva, and Yu. D. Fomin, Theor. Math. Phys. 167, 645 (2011).

    Article  Google Scholar 

  2. Yu. D. Fomin, N. V. Gribova, and V. N. Ryzhov, J. Chem. Phys. 129, 064512 (2008).

    Article  Google Scholar 

  3. J. W. P. Schmelzer, J. Chem. Phys. 136, 074512 (2012).

    Article  Google Scholar 

  4. V. A. Khonik, Soros. Obrazov. Zh., No. 3, 95 (2001).

    Google Scholar 

  5. A. I. Chernoutsan, Soros. Obrazov. Zh., No. 3, 103 (2001).

    Google Scholar 

  6. D. K. Belashchenko, Russ. J. Phys. Chem. A 82, 364 (2008).

    CAS  Google Scholar 

  7. S. P. Pan, J. Y. Qin, W. M. Wang, et al., Phys. Rev. B 84, 09220112 (2011).

    Google Scholar 

  8. I. V. Zolotukhin, Soros. Obrazov. Zh., No. 4, 73 (1997).

    Google Scholar 

  9. A. I. Fedorchenko and A. A. Chernov, Russ. J. Eng. Termophys. 10, 201 (2000).

    Google Scholar 

  10. V. A. Khonik, K. Kitagawa, and H. Morii, J. Appl. Phys. 87, 8440 (2000).

    Article  CAS  Google Scholar 

  11. G. G. Boyko, in Proceedings of the Japan-Russia-China International Seminar on the Structure and Formation of Glasses (1992), p. 55.

    Google Scholar 

  12. A. I. Fedorchenko and A. A. Chernov, Int. J. Heat Mass Transfer 46, 921 (2003).

    Article  CAS  Google Scholar 

  13. M. I. Mendelev, J. Schmalian, C. Wang, et al., Phys. Rev. B 74, 104206 (2006).

    Article  Google Scholar 

  14. A. C. Y. Liu, M. J. Neish, G. Stokol, et al., Phys. Rev. Lett. 110, 205505 (2013).

    Article  CAS  Google Scholar 

  15. U. Bengtzelius, W. Gotze, and A. Sjolander, J. Phys. C 17, 5915 (1984).

    Article  CAS  Google Scholar 

  16. V. A. Polukhin and N. A. Vatolin, Modeling of Amorphous Metals (Nauka, Moscow, 1985) [in Russian].

    Google Scholar 

  17. D. K. Belashchenko, Russ. J. Phys. Chem. A 87, 615 (2013).

    Article  CAS  Google Scholar 

  18. V. A. Polukhin, Fiz. Met. Metalloved. 51, 64 (1981).

    CAS  Google Scholar 

  19. Y. Fumiko, S. Shoichi, and H. Motoo, J. Non-Cryst. Solids 137, 135 (1991).

    Google Scholar 

  20. M. S. Daw and M. I. Baskes, Phys. Rev. Lett. 50, 1285 (1983).

    Article  CAS  Google Scholar 

  21. X. Y. Liu, X. Wei, S. M. Foiles, et al., Appl. Phys. Lett. 72, 1578 (2006).

    Article  Google Scholar 

  22. D. Faken and H. Jonsson, Comput. Mater. Sci. 2, 279 (1994).

    Article  CAS  Google Scholar 

  23. D. Turnbull, J. Appl. Phys. 21, 1022 (1950).

    Article  CAS  Google Scholar 

  24. F. C. Frank, Proc. R. Soc. London A 215, 43 (1952).

    Article  CAS  Google Scholar 

  25. H. L. Peng, M. Z. Li, W. H. Wang, et al., Appl. Phys. Lett. 96, 021901 (2010).

    Article  Google Scholar 

  26. T. Schenk and D. Holland-Moritz, Phys. Rev. Lett. 89, 075507 (2002).

    Article  CAS  Google Scholar 

  27. L. Huang, C. Z. Wang, S. G. Hao, et al., Phys. Rev. B 81, 014108 (2010).

    Article  Google Scholar 

  28. K. F. Kelton, G. W. Lee, A. K. Gangopadhyay, et al., Phys. Rev. Lett. 90, 195504 (2003).

    Article  CAS  Google Scholar 

  29. G. W. Lee, A. K. Gangopadhyay, T. K. Croat, et al., Phys. Rev. B 72, 174107 (2005).

    Article  Google Scholar 

  30. P. J. Steinhardt, D. R. Nelson, and M. Ronchetti, Phys. Rev. Lett. 47, 1297 (1981).

    Article  CAS  Google Scholar 

  31. T. Schenk, D. Holland-Moritz, V. Simonet, et al., Phys. Rev. Lett. 89, 075507 (2002).

    Article  CAS  Google Scholar 

  32. W. K. Luo, H. W. Sheng, F. M. Alamgir, et al., Phys. Rev. Lett. 92, 145502 (2004).

    Article  CAS  Google Scholar 

  33. H. Reichert, O. Klein, H. Dosch, et al., Nature (London) 408, 839 (2000).

    Article  CAS  Google Scholar 

  34. G. M. Bartenev, Dokl. Akad. Nauk SSSR 76, 227 (1951).

    CAS  Google Scholar 

  35. M. V. Vol’kenshtein and O. B. Ptitsyn, Dokl. Akad. Nauk SSSR 103, 795 (1955).

    Google Scholar 

  36. M. V. Vol’kenshtein and O. B. Ptitsyn, Zh. Tekh. Fiz. 26, 2204 (1956).

    Google Scholar 

  37. B. D. Sanditov, S. Sh. Sangadiev, and D. S. Sanditov, Glass Phys. Chem. 33, 445 (2007).

    Article  CAS  Google Scholar 

  38. G. E. Norman and V. V. Pisarev, Russ. J. Phys. Chem. A 86, 1447 (2012).

    Article  CAS  Google Scholar 

  39. A. Yu. Kuksin, G. E. Norman, V. V. Pisarev, et al., Phys. Rev. B 82, 174101 (2010).

    Article  Google Scholar 

  40. V. V. Pisarev, High Temp. 50, 717 (2012).

    Article  CAS  Google Scholar 

  41. V. V. Pisarev, Russ. J. Phys. Chem. A 88, 1382 (2014).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. N. Kolotova.

Additional information

Original Russian Text © L.N. Kolotova, G.E. Norman, V.V. Pisarev, 2015, published in Zhurnal Fizicheskoi Khimii, 2015, Vol. 89, No. 5, pp. 796–800.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kolotova, L.N., Norman, G.E. & Pisarev, V.V. Glass transition of an overcooled aluminum melt: A study in molecular dynamics. Russ. J. Phys. Chem. 89, 802–806 (2015). https://doi.org/10.1134/S0036024415050209

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024415050209

Keywords

Navigation