Skip to main content
Log in

Effect of low concentrations of carbon nanotubes on electric dipole relaxation in a polyurethane elastomer

  • Physical Chemistry of Nanoclusters and Nanomaterials
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The effect of small (up to 0.018 wt %) additions of single-walled carbon nanotubes (SWNTs) on the complex electric modulus M*= M′ - jM″ and the spectrum of the relaxation times G(τ) of a cross-linked polyurethane elastomer containing ∼10 vol % of polyamide-6 dispersed in the polyurethane matrix and incompatible with it was studied. The measurements were conducted in the range of electric field frequencies 10−3–105 Hz at temperatures from 133 to 413 K. Based on the shape analysis of the M″(M′) diagrams, the contributions of electric conductivity and dielectric relaxation to complex dielectric permittivity ɛ* = ɛ′ - jɛ″ were separated and the effect of additions on α and β relaxation for both polyurethane and polyamide phases was analyzed in accordance with the peculiarities of phase-separated systems. The introduction of SWNTs in the composite affected the dielectric properties of the material; the maximum effect was observed at concentrations of 0.002–0.008 wt %; at higher SWNT concentrations, the scatter of data increased and did not allow us to evaluate the effect. The effect of SWNTs on G(τ) in the main phase was opposite to that in the polyamide phase. In the temperature range of α relaxation of the polyurethane phase, the relaxation times increased after the introduction of SWNTs evidently because of the decrease in the free volume that determines the α relaxation times of polyurethane. In contrast, for the polyamide phase in the range of α relaxation, the relaxation times decreased after the introduction of SWNTs. The results agree with the literature data on the effect of ultrasmall SWNT concentrations on the physicomechanical characteristics of the polyurethane elastomer and its electric conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. F. Novikov, E. V. Rabenok, Ya. I. Estrin, et al., Russ. J. Phys. Chem. A 88, 1790 (2014).

    Article  CAS  Google Scholar 

  2. Ya. I. Estrin, E. R. Badamshina, A. A. Grishchuk, et al., Polymer Sci., Ser. A 54, 290 (2012).

    Article  CAS  Google Scholar 

  3. F. Kremer, in Broadband Dielectric Spectroscopy, Ed. by A. Schonhals (Springer, Berlin, 2003),Ch. 3.

  4. N. A. Nikonorova, E. B. Barmatov, D. A. Pebalk, et al., J. Phys. Chem. C 111, 8451 (2007)

    Article  CAS  Google Scholar 

  5. C. A. Angell, J. Non-Cryst. Solids 13, 131 (1991).

    Google Scholar 

  6. K. N. Fisher, Phys. Status Solidi B 116, 357 (1983).

    Article  Google Scholar 

  7. D. Viehland, S. Jang, L. E. Cross, and M. Wuttig, Philos. Mag. 64, 335 (1991).

    Article  CAS  Google Scholar 

  8. C. A. Angell, Ann. Rev. Phys. Chem. 43, 693 (1992).

    Article  CAS  Google Scholar 

  9. A. V. Krestinin, G. I. Zvereva, M. B. Kislov, et al., in Proceedings of the 2nd International Forum on Nanotechnologies Rusnanotech 09 (Moscow, 2009), p. 316 [in Russian].

    Google Scholar 

  10. A. G. Ryabenko, T. V. Dorofeeva, and G. I. Zvereva, Carbon 42, 1523 (2004).

    Article  CAS  Google Scholar 

  11. S. Havriliak and S. Negami, Polymer 8(4), 161 (1967).

    Article  CAS  Google Scholar 

  12. S. Gavril’yak and S. Negami, in Transitions and Relaxation Phenomena in Polymers, Ed. by R. Boyer (Academic, New York, 1966; Mir, Moscow, 1968), p. 118.

  13. Novocontrol GmbH, WinFit 2.9, Owner’s Manual (Germany, 2000), No. 12, p. 137.

    Google Scholar 

  14. I. A. Chernov, T. R. Deberdeev, G. F. Novikov, et al., Plast. Massy, No. 8, 5 (2003).

    Google Scholar 

  15. WinFit 2.9, Owner’s Manual (Novocontrol GmbH, Germany, 2000).

  16. C. Tsonos, L. Apekis, K. Viras, et al., Solid State Ionics 143, 229 (2001).

    Article  CAS  Google Scholar 

  17. G. E. Stillman, C. M. Waife, and J. O. Dimmock, J. Phys. Chem. Solids 31, 1199 (1970).

    Article  CAS  Google Scholar 

  18. D. N. Voilov, G. F. Novikov, S. S. Pesetskii, et al., Plast. Massy, No. 3, 15 (2008).

    Google Scholar 

  19. E. R. Badamshina, M. P. Gafurova, and Ya. I. Estrin, Russ. Chem. Rev. 79, 945 (2010).

    Article  CAS  Google Scholar 

  20. A. Visco, L. Calabrese, and C. Milone, J. Reinforc. Plast. Comp. 28, 937 (2009).

    Article  CAS  Google Scholar 

  21. A. Wall, J. N. Coleman, and M. S. Ferreira, Phys. Rev. B 71, 125421 (2005).

    Article  Google Scholar 

  22. W. Jeong and M. R. Kessler, Chem. Mater. 20, 7060 (2008).

    Article  CAS  Google Scholar 

  23. E. Vassileva and K. Friedrich, J. Appl. Polym. Sci. 89, 3774 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. F. Novikov.

Additional information

Original Russian Text © E.V. Rabenok, G.F. Novikov, Ya.I. Estrin, E.R. Badamshina, 2015, published in Zhurnal Fizicheskoi Khimii, 2015, Vol. 89, No. 3, pp. 433–439.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rabenok, E.V., Novikov, G.F., Estrin, Y.I. et al. Effect of low concentrations of carbon nanotubes on electric dipole relaxation in a polyurethane elastomer. Russ. J. Phys. Chem. 89, 436–442 (2015). https://doi.org/10.1134/S0036024415020247

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024415020247

Keywords

Navigation