Skip to main content
Log in

Theoretical study on the reaction mechanism of azacyclopropenylidene with azetidine: an insertion process

  • Chemical Kinetics and Catalysis
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The mechanism of reaction between azacyclopropenylidene and azetidine has been systematically investigated employing the second-order Møller-Plesset perturbation theory (MP2) method to better understand the azacyclopropenylidene reactivity with azetidine four-membered cycle. Geometry optimization, vibrational analysis, and energy properties for the involved stationary points on the potential energy surface have been calculated. It was found that at the first step of this reaction, azacyclopropenylidene can insert into azetidine cycle at its C-N or C-C bond to form spiro intermediate IM. It was found that azacyclopropenylidene insertion into C-N bond is easier than into C-C bond. Through the ring-opening step at C-C bond of azacyclopropenylidene fragment, IM can transfer to product P1, which is named as pathway (1). On the other hand, through the H-transferred step and subsequent ring-opened step at C-N bond of azacyclopropenylidene fragment, IM can turn into product P2, which is named as pathway (2). From the thermodynamics viewpoint, P2 allene is the dominating product. From the kinetic viewpoint, the pathway (1) of formation to P1 is primary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. P. Joăo, S. Da, and N. R. Mozart, Int. J. Quantum. Chem. 2, 215 (1992).

    Google Scholar 

  2. J. A. Francisco and S. L. Richardson, J. Chem. Phys. 9, 7707 (1994).

    Article  Google Scholar 

  3. P. Botschwina, M. Horn, S. Seeger, and J. Flugge, Mol. Phys. 1, 191 (1993).

    Article  Google Scholar 

  4. P. Botschwina, B. Schulz, M. Horn, and M. Matuschewski, Chem. Phys. 190, 345 (1995).

    Article  CAS  Google Scholar 

  5. H. Suzuki, S. Yamamoto, M. Ohishi, N. Kaifu, S. Ishikawa, Y. Hirahara, and S. Takano, Astrophys. J. 392, 551 (1992).

    Article  CAS  Google Scholar 

  6. H. E. Matthews, W. Irvine, P. Freiberg, R. D. Brown, and P. D. Godfrey, Nature 310, 125 (1984).

    Article  CAS  Google Scholar 

  7. K. Aoki, S. Ikuta, and A. Murakami, Chem. Phys. Lett. 3, 211 (1993).

    Article  Google Scholar 

  8. K. Aoki, S. Ikuta, and O. Nomura, J. Chem. Phys. 9, 7661 (1993).

    Article  Google Scholar 

  9. W. M. Irvine, Adv. Space Res. 3, 35 (1995).

    Article  Google Scholar 

  10. B. Lee, Chem. Phys. Lett. 1–2, 171 (1998).

    Article  Google Scholar 

  11. S. Saito, K. Kawaguchi, S. Yamamoto, M. Ohishi, H. Suzuki, and N. Kaifu, Astrophys. J. 317, L115 (1987).

    Article  CAS  Google Scholar 

  12. M. B. Bell, L. W. Avery, and A. Feldman, Astrophys. J. 417, L37 (1993).

    Article  Google Scholar 

  13. S. Yamamoto, S. Saito, K. Kawaguchi, N. Kaifu, H. Suzuki, and M. Ohishi, Astrophys. J. 317, L119 (1987).

    Article  CAS  Google Scholar 

  14. K. Kim, B. Lee, and S. Lee, Chem. Phys. Lett. 297, 65 (1998).

    Article  CAS  Google Scholar 

  15. S. Lee, Chem. Phys. Lett. 1–2, 69 (1997).

    Article  Google Scholar 

  16. M. Ohishi, N. Kaifu, K. Kawaguchi, A. Murakami, S. Saito, S. Yamamoto, S. I. Ishikawa, Y. Fujita, Y. Shiratori, and W. M. Irvine, Astrophys. J. 345, L83 (1989).

    Article  CAS  Google Scholar 

  17. M. B. Bell, P. A. Feldman, M. J. Travers, M. C. McCarthy, C. A. Gottlieb, and P. Thaddeus, Astrophys. J. 483, L61 (1997).

    Article  CAS  Google Scholar 

  18. D. McGonagle and W. M. Irvine, Astron. Astrophys. 310, 970 (1996).

    CAS  Google Scholar 

  19. M. C. McCarthy, C. A. Gottlieb, A. L. Cooksy, and P. Thaddeus, J. Chem. Phys. 18, 7779 (1995).

    Article  Google Scholar 

  20. N. Goldberg, A. Fiedler, and H. Schwarz, J. Phys. Chem. 42, 15327 (1995).

    Article  Google Scholar 

  21. K. Aoki, S. Ikuta, and O. Nomura, J. Chem. Phys. 5, 3809 (1993).

    Article  Google Scholar 

  22. F. Sun, A. Kosterev, G. Scott, V. Litosh, and R. F. Curl, J. Chem. Phys. 20, 8851 (1998).

    Article  Google Scholar 

  23. P. Y. Hung, F. Sun, N. T. Hunt, L. A. Burns, and R. F. Curl, J. Chem. Phys. 20, 9331 (2001).

    Article  Google Scholar 

  24. J. E. Rice and H. F. Schaefer, J. Chem. Phys. 12, 7051 (1987).

    Article  Google Scholar 

  25. E. T. Seidl and H. F. Schaefer, J. Chem. Phys. 6, 4449 (1992).

    Article  Google Scholar 

  26. P. Sung-Woo and L. Sungyul, Bull. Korean Chem. Soc. 11, 1553 (2002).

    Google Scholar 

  27. I. Natalia, H. Xinchuan, and J. L. Timothy, J. Chem. Phys. 135, 244310 (2011).

    Article  Google Scholar 

  28. M. Z. Kassaee, S. M. Musavi, and N. Jalalimanesh, J. Theor. Comput. Chem. 3, 367 (2008).

    Article  Google Scholar 

  29. M. Z. Kassaee, M. Ghambarian, and S. M. Musavi, Heteroatom. Chem. 4, 377 (2008).

    Article  Google Scholar 

  30. K. Jacek, J. Phys. Chem. A 107, 4717 (2003).

    Article  Google Scholar 

  31. G. Maier, H. P. Reisenauer, and K. Rademacher, Chem. Eur. J. 10, 1957 (1998).

    Article  Google Scholar 

  32. G. Maier, A. Bothur, J. Eckwert, and H. P. Reisenauer, Chem. Eur. J. 10, 1964 (1998).

    Article  Google Scholar 

  33. N. Balucani, M. Alagia, L. Cartechini, P. Casavecchia, G. G. Volpi, K. Sato, T. Takayanagi, and Y. Kurosaki, J. Am. Chem. Soc. 18, 4443 (2000).

    Article  Google Scholar 

  34. M. R. Nimlos, G. Davico, C. M. Geise, P. G. Wenthold, W. C. Lineberger, S. J. Blanksby, C. M. Hadad, G. A. Petersson, and G. B. Ellison, J. Chem. Phys. 9, 4323 (2002).

    Article  Google Scholar 

  35. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, R. E. Stratmann, Jr., J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, A. G. Baboul, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, M. A. Peng, A. Nanayakkara, C. Gonzalez, C. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, and J. A. Pople, Gaussian 98, Revision A.9 (Gaussian Inc., Pittsburgh, PA, 1998).

    Google Scholar 

  36. P. Thaddeus, C. A. Gottlieb, R. Mollaaghababa, and J. M. Vrtilek, J. Chem. Soc. Faraday Trans. 89, 2125 (1993).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojun Tan.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jing, Y., Tan, X., Wang, F. et al. Theoretical study on the reaction mechanism of azacyclopropenylidene with azetidine: an insertion process. Russ. J. Phys. Chem. 89, 44–50 (2015). https://doi.org/10.1134/S003602441501032X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003602441501032X

Keywords

Navigation