Skip to main content
Log in

Structure of the hydration shell of the Na+ ion in a planar nanopore with hydrophobic walls

  • Physical Chemistry of Nanoclusters and Nanomaterials
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The effect of steric hindrances in extremely narrow planar pores on the structure of the hydration shell of the single-charged sodium cation in water vapors at room temperature was studied by computer simulation. The deficiency of empty space for the motion in the slit-like pore was shown to slightly affect the radial distribution of molecules around the ion. The integrated (over the directions) numbers of ion-oxygen atom bonds of molecules in the ion’s hydration shell did not change despite the change in the shape of the hydration cluster from three- to two-dimensional. It was concluded that the changes in the positions of molecules relative to the ion were mainly reduced to azimuthal displacements; as a result, the local bulk density of molecules in the pore was higher than at the same distances outside the pore for the same total number of molecules. The distribution of molecules over layers inside the pore demonstrates the effect of molecules spread over the walls. The effect of ion displacement from its own hydration shell found earlier for the free chloride ion is steadily reproduced under the pore conditions. An alternative explanation to this effect was proposed that does not suggest high ion polarizability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Pertsina and M. Grunze, J. Chem. Phys. 125, 114707 (2006).

    Article  Google Scholar 

  2. N. Desbiens, A. Boutin, and I. Demachy, J. Phys. Chem. B 109, 24071 (2005).

    Article  CAS  Google Scholar 

  3. F. Cailliez, A. Boutin, I. Demachy, and A. H. Fuchs, Mol. Simul. 35, 24 (2009).

    Article  CAS  Google Scholar 

  4. E. Kierlik, Y. Fan, P. A. Monson, and M. L. Rosinberg, J. Chem. Phys. 102, 3712 (1995).

    Article  CAS  Google Scholar 

  5. J. P. Donley and A. J. Liu, Phys. Rev. E 55, 539 (1997).

    Article  Google Scholar 

  6. K. S. Page and P. A. Monson, Phys. Rev. E 54, 6557 (1996).

    Article  CAS  Google Scholar 

  7. Z. Zhang and A. Chakrabarti, Phys. Rev. E 52, 2736 (1995).

    Article  CAS  Google Scholar 

  8. E. A. Müller, L. F. Rull, L. F. Vega, and K. A. Gubbins, J. Phys. Chem. 100, 1189 (1996).

    Article  Google Scholar 

  9. S. Soko owski and J. Fisher, Mol. Phys. 71, 393 (1990).

    Article  Google Scholar 

  10. Z. Tan and K. E. Gubbins, J. Phys. Chem. 96, 845 (1992).

    Article  CAS  Google Scholar 

  11. V. Babin, A. Ciach, and M. Tasinkevych, J. Chem. Phys. 114, 9585 (2001).

    Article  CAS  Google Scholar 

  12. J. N. Israelachvili, P. M. McGuiggan, and A. M. Homola, Science 240(4849), 189 (1988).

    Article  CAS  Google Scholar 

  13. J. van Alsten and S. Granick, Phys. Rev. Lett. 61, 2570 (1988).

    Article  Google Scholar 

  14. H.-W. Hu, G. A. Carson, and S. Granick, Phys. Rev. Lett. 66, 2758 (1991).

    Article  CAS  Google Scholar 

  15. P. A. Thompson and M. O. Robbins, Science 250(4982), 792 (1990).

    Article  CAS  Google Scholar 

  16. H. Eslami, F. Mozaffari, J. Moghadasi, and F. Müller-Plathe, J. Chem. Phys. 129, 194702 (2008).

    Article  Google Scholar 

  17. D. Torii and T. Ohara, J. Chem. Phys. 126, 154706 (2007).

    Article  Google Scholar 

  18. S. Granick, Science 253(5026), 1374 (1991).

    Article  CAS  Google Scholar 

  19. J. Klein and E. Kumacheva, Science 269(5225), 816 (1995).

    Article  CAS  Google Scholar 

  20. J. Klein and E. Kumacheva, J. Chem. Phys. 108, 6996 (1998); J. Chem. Phys. 108, 7010 (1998).

    Article  CAS  Google Scholar 

  21. M. L. Gee, P. M. McGuiggan, J. N. Israelachvili, and A. M. Homola, J. Chem. Phys. 93, 1895 (1990).

    Article  CAS  Google Scholar 

  22. S. V. Shevkunov, Russ. J. Phys. Chem. A 85, 1584 (2011).

    Article  CAS  Google Scholar 

  23. S. V. Shevkunov, Colloid. J. 71, 406 (2009).

    Article  CAS  Google Scholar 

  24. D. H. Herce, L. Perera, T. A. Darden, and C. Sagui, J. Chem. Phys. 122, 024513 (2005).

    Article  Google Scholar 

  25. S. I. Lukyanov, Z. S. Zidi, and S. V. Shevkunov, J. Mol. Struct. (THEOCHEM) 725, 191 (2005).

    Article  CAS  Google Scholar 

  26. S. V. Shevkunov, S. I. Lukyanov, J.-M. Leyssale, and Cl. Millot, Chem. Phys. 310, 97 (2005).

    Article  CAS  Google Scholar 

  27. S. V. Shevkunov, Russ. J. Phys. Chem. A 78, 1590 (2004).

    Google Scholar 

  28. S. V. Shevkunov, Colloid. J. 66, 495 (2004).

    Article  CAS  Google Scholar 

  29. S. V. Shevkunov, Colloid. J. 66, 216 (2004).

    Article  CAS  Google Scholar 

  30. S. V. Shevkunov, Khim. Fiz. 22(1), 90 (2003).

    CAS  Google Scholar 

  31. S. V. Shevkunov, Colloid. J. 64, 236 (2002).

    Article  CAS  Google Scholar 

  32. S. V. Shevkunov, Colloid. J. 64, 243 (2002).

    Article  CAS  Google Scholar 

  33. S. V. Shevkunov, Russ. J. Phys. Chem. A 76, 499 (2002).

    Google Scholar 

  34. L. X. Dang and D. E. Smith, J. Chem. Phys. 99, 6950 (1993).

    Article  CAS  Google Scholar 

  35. S. V. Shevkunov, Colloid. J. 73, 275 (2011).

    Article  CAS  Google Scholar 

  36. S. V. Shevkunov, Russ. J. Phys. Chem. A 83, 972 (2009).

    Article  CAS  Google Scholar 

  37. S. I. Lukyanov, Z. S. Zidi, and S. V. Shevkunov, Fluid Phase Equilib. 233, 34 (2005).

    Article  CAS  Google Scholar 

  38. S. I. Lukyanov, Z. S. Zidi, and S. V. Shevkunov, J. Mol. Struct. (THEOCHEM) 623, 221 (2003).

    Article  CAS  Google Scholar 

  39. T. Hill, Statistical Mechanics; Principles and Selected Applications (Dover, New York, 1987; Inostr. Liter., Moscow, 1960).

    Google Scholar 

  40. S. V. Shevkunov, Colloid. J. 72, 93 (2010).

    Article  CAS  Google Scholar 

  41. S. V. Shevkunov, Russ. J. Electrochem. 49, 228 (2013).

    Article  CAS  Google Scholar 

  42. M. Arshadi, R. Yamdagni, and P. Kebarle, J. Phys. Chem. 74, 1466 (1970).

    Article  Google Scholar 

  43. A. C. Olleta, H. M. Lee, and K. S. Kim, J. Chem. Phys. 124, 024321 (2006).

    Article  Google Scholar 

  44. Chemist’s Manual, Vol. 1, Ed. by B. P. Nikol’skii (Khimiya, Leningrad, 1966) [in Russian].

    Google Scholar 

  45. V. E. Petrenko, M. L. Antipova, and D. L. Gurina, Russ. J. Phys. Chem. A 87, 49 (2013).

    Article  CAS  Google Scholar 

  46. M. L. Antipova and V. E. Petrenko, Russ. J. Phys. Chem. A 87, 1170 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Shevkunov.

Additional information

Original Russian Text © S.V. Shevkunov, 2014, published in Zhurnal Fizicheskoi Khimii, 2014, Vol. 88, No. 10, pp. 1554–1561.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shevkunov, S.V. Structure of the hydration shell of the Na+ ion in a planar nanopore with hydrophobic walls. Russ. J. Phys. Chem. 88, 1744–1750 (2014). https://doi.org/10.1134/S0036024414100318

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024414100318

Keywords

Navigation