Skip to main content
Log in

Size and Density Control of Au Nanoparticles Decorated on MoS2 Thin Films for Preparing High-Performance SERS Substrates

  • INORGANIC MATERIALS AND NANOMATERIALS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

This study investigates the effect of size and density of decorated Au nanoparticles on the enhancement in the Raman signals of organic molecules. The MoS2/Au SERS substrates with low cost and high sensitivity were prepared to detect Rhodamine 6G dye (R6G) at low concentration. The MoS2 thin films were grown directly on glass substrates (area 1 × 1 cm2) using chemical bath deposition. Then, the Au nanoparticles were decorated onto MoS2 thin films via chemical reduction method. The optical, structure and surface morphology properties of MoS2/Au SERS substrates were investigated by UV-Vis spectra, XRD patterns and FESEM images, respectively. The results confirmed that MoS2/Au SERS substrates with a good crystalline structure, uniform distribution and high density of Au NPs on the surface of MoS2 thin films were beneficial to the sensitivity of the SERS signal. The optimal MoS2/Au (80°C, 15 min) SERS substrate showed the average size of the Au NPs of 36 nm, nanogap between Au NPs of 13 nm and presence of porous MoS2 thin film, which combined the synergistic effect of the localized surface-plasmon resonance and charge transfer process for enhancing the SERS signal. The detection sensitivity of SERS substrate is related to (1) the nanogap between Au nanoparticles on the surface of MoS2 thin film (hot spots), (2) the charge transfer process between MoS2/Au interfaces and R6G and (3) the charge transfer process between MoS2 and R6G. The best SERS substrates detected R6G solution at a limit of detection of 10−14 M and an enhancement factor of 1.76 × 1013.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig 8.
Fig. 9.
Fig. 10.

REFERENCES

  1. M. Alamri, R. Sakidja, R. Goul, S. Ghopry, and J. Z. Wu, ACS Appl. Nano Mater. 2, 1412 (2019). https://doi.org/10.1021/acsanm.8b02308

    Article  CAS  Google Scholar 

  2. S. Su, C. Zhang, L. Yuwen, J. Chao, X. Zuo, X. Liu, C. Song, C. Fan, and L. Wang, ACS Appl. Mater. Interfaces. 6, 18735 (2014). https://doi.org/10.1021/am5043092

    Article  PubMed  CAS  Google Scholar 

  3. H. Sun, M. Yao, Y. Song, L. Zhu, J. Dong, R. Liu, P. Li, B. Zhao, and B. Liu, Nanoscale 11, 21493 (2019). https://doi.org/10.1039/C9NR07098B

    Article  PubMed  CAS  Google Scholar 

  4. P. X. Chen, H. W. Qiu, S. C. Xu, X. Y. Liu, Z. Li, L. T. Hu, C.H. Li, J. Guo, S. Z. Jiang, and Y. Y. Huo, Appl. Surf. Sci. 375, 207 (2016). https://doi.org/10.1016/j.apsusc.2016.03.053

    Article  ADS  CAS  Google Scholar 

  5. P. K. Kannan, P. Shankar, C. Blackman, and C. H. Chung, Adv. Mater. 31, 1803432 (2019). https://doi.org/10.1002/adma.201803432

    Article  CAS  Google Scholar 

  6. E. Chaffin, R. T. O’Connor, J. Barr, X. Huang, and Y. Wang, J. Chem. Phys. 145, 054706 (2016). https://doi.org/10.1063/1.4960052

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  7. F. D. C. Vega, P. G. M. Torres, J. P. Molina, N. M. G. Ortiz, V. G. Hadjiev, J. Z. Medina, and F. C. R. Hernandez, J. Mater. Chem. C 5, 4959 (2017). https://doi.org/10.1039/C7TC00527J

    Article  Google Scholar 

  8. K. Quester, M. Avalos-Borja, A. R. Vilchis-Nestor, M. A. Camacho-López, and E. Castro-Longoria, PLoS One 8, e77486 (2013). https://doi.org/10.1371/journal.pone.0077486

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  9. P. Li, M. Ge, L. Yang, and J. Liu, Analyst. 144, 421 (2019). https://doi.org/10.1039/C8AN02206B

    Article  ADS  PubMed  CAS  Google Scholar 

  10. P. Photopoulos, N. Boukos, M. Panagopoulou, N. Meintanis, N. Pantiskos, Y. Raptis, and D. Tsoukalas, Procedia Eng. 25, 280 (2011). https://doi.org/10.1016/j.proeng.2011.12.069

    Article  CAS  Google Scholar 

  11. C. H. Lai, G. A. Wang, T. K. Ling, T. J. Wang, P. K. Chiu, Y. F. C. Chau, C. C. Huang, and H. P. Chiang, Sci. Rep. 7, 5446 (2017). https://doi.org/10.1038/s41598-017-05939-0

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  12. Y. Lu, G. L. Liu, and L. P. Lee, Nano Lett. 5, 5 (2005). https://doi.org/10.1021/nl048965u

    Article  ADS  PubMed  CAS  Google Scholar 

  13. M. Dendisová-Vyškovská, V. Prokopec, M. Člupek, and P. Matějka, J. Raman Spectrosc. 43, 181 (2012). https://doi.org/10.1002/jrs.3022

    Article  ADS  CAS  Google Scholar 

  14. A. V. Markin, N. E. Markina, J. Popp, and D. Cialla-May, TrAC—Trends Anal. Chem. 108, 247 (2018). https://doi.org/10.1016/j.trac.2018.09.004

    Article  CAS  Google Scholar 

  15. B. Man, G. Wang, Z. Li, S. Xu, C. Li, J. Yu, C. Zhang, and X. Zhao, J. Alloys Compd. 902, 163789 (2022). https://doi.org/10.1016/j.jallcom.2022.163789

    Article  CAS  Google Scholar 

  16. E. A. Kumar, N. R. Barveen, T. J. Wang, T. Kokulnathan, and Y. H. Chang, Microchem. J. 170, 106660 (2021). https://doi.org/10.1016/j.microc.2021.106660

    Article  CAS  Google Scholar 

  17. C. Liu, X. Xu, C. Wang, G. Qiu, W. Ye, Y. Li, and D. Wang, Sens. Actuators B Chem. 307, 127634 (2020). https://doi.org/10.1016/j.snb.2019.127634

    Article  CAS  Google Scholar 

  18. C. S. Hwang, S. Lee, S. Lee, H. Kim, T. Kang, D. Lee, and K. H. Jeong, ACS. Appl. Mater. Interfaces 14, 54550 (2022). https://doi.org/10.1021/acsami.2c16446

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. W. Yang, J. Tang, Q. Ou, X. Yan, L. Liu, and Y. Liu, ACS Omega 6, 27271 (2021). https://doi.org/10.1021/acsomega.1c04082

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. T. Ignat, R. Munoz, K. Irina, I. Obieta, M. Mihaela, M. Simion, and M. Iovu, Superlattices Microstruct. 46, 451 (2009). https://doi.org/10.1016/j.spmi.2009.07.019

    Article  ADS  CAS  Google Scholar 

  21. F. Ye, S. Ju, Y. Liu, Y. Jiang, H. Chen, L. Ge, C. Yan, and A. Yuan, Cryst. Res. Technol. 54, 1800257 (2019). https://doi.org/10.1002/crat.201800257

    Article  CAS  Google Scholar 

  22. X. Zheng, Z. Guo, G. Zhang, H. Li, J. Zhang, and Q. Xu, J. Mater. Chem. A 7, 19922 (2019). https://doi.org/10.1039/C9TA06091J

    Article  CAS  Google Scholar 

  23. Q. Wei, Q. Dong, D. W. Sun, and H. Pu, Spectrochim. Acta A Mol. Biomol. Spectrosc. 285, 121895 (2023). https://doi.org/10.1016/j.saa.2022.121895

    Article  PubMed  CAS  Google Scholar 

  24. X. Song, X. You, X. Ren, X. Zhang, D. Tang, and X. Li, J. Environ. Chem. Eng. 11, 109437 (2023). https://doi.org/10.1016/j.jece.2023.109437

    Article  CAS  Google Scholar 

  25. Y. Yin, C. Li, Y. Yan, W. Xiong, J. Ren, and W. Luo, Coatings 12, 360 (2022). https://doi.org/10.3390/coatings12030360

    Article  CAS  Google Scholar 

  26. S. Lakshmy, G. Sanyal, A. Vaidyanathan, S. Joseph, N. Kalarikkal, and B. Chakraborty, Appl. Surf. Sci. 562, 150216 (2021). https://doi.org/10.1016/j.apsusc.2021.150216

    Article  CAS  Google Scholar 

  27. S. S. Singha, S. Mondal, T. S. Bhattacharya, L. Das, K. Sen, B. Satpati, K. Das, and A. Singha, Biosens. Bioelectron. 119, 10 (2018). https://doi.org/10.1016/j.bios.2018.07.061

    Article  PubMed  CAS  Google Scholar 

  28. L. Liu, C. Shangguan, J. Guo, K. Ma, S. Jiao, Y. Yao, and J. Wang, Adv. Opt. Mater. 8, 2001214 (2020). https://doi.org/10.1002/adom.202001214

    Article  CAS  Google Scholar 

  29. X. Liang, X. J. Zhang, T. T. You, N. Yang, G. S. Wang, and P. G. Yin, J. Raman Spectrosc. 49, 245 (2018). https://doi.org/10.1002/jrs.5273

    Article  ADS  CAS  Google Scholar 

  30. L. Zhou, H. Zhang, H. Bao, G. Liu, Y. Li, and W. Cai, J. Phys. Chem. C 122, 8628 (2018). https://doi.org/10.1021/acs.jpcc.8b01216

    Article  CAS  Google Scholar 

  31. H. Lai, G. Ma, W. Shang, D. Chen, Y. Yun, X. Peng, and F. Xu, Chemosphere 223, 465 (2019). https://doi.org/10.1016/j.chemosphere.2019.02.073

    Article  ADS  PubMed  CAS  Google Scholar 

  32. S. Guo, X. Ren, and X. Li, Plasmonics 15, 591 (2020). https://doi.org/10.1007/s11468-019-01090-w

    Article  CAS  Google Scholar 

  33. K. Y. Yang, H. T. Nguyen, Y. M. Tsao, S. B. Artemkina, V. E. Fedorov, C. W. Huang, and H. C. Wang, Sci. Rep. 13, 8378 (2023). https://doi.org/10.1038/s41598-023-35596-5

    Article  ADS  PubMed  PubMed Central  CAS  Google Scholar 

  34. H. Qiu, Z. Li, S. Gao, P. Chen, C. Zhang, S. Jiang, S. Xu, C. Yang, and H. Li, RSC Adv. 5, 83899 (2015). https://doi.org/10.1039/C5RA16640C

  35. K. Lv, H. Si, J. Liu, T. Zhu, Y. Xia, S. Chen, Y. Zhao, and C. Yang, J. Alloys Compd. 846, 156438 (2020). https://doi.org/10.1016/j.jallcom.2020.156438

    Article  CAS  Google Scholar 

  36. L. Hou, M. Shao, Z. Li, X. Zhao, A. Liu, C. Zhang, X. Xiu, J. Yu, and Z. Li, Opt. Express. 28, 29357 (2020). https://doi.org/10.1364/OE.403940

    Article  ADS  PubMed  CAS  Google Scholar 

  37. T. S. Ko, and Y. L. Chen, Nanomaterials 12, 786 (2022). https://doi.org/10.3390/nano12050786

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. K. Q. Lin, J. Yi, S. Hu, B. J. Liu, J. Y. Liu, X. Wang, and B. Ren, J. Phys. Chem. C 120, 20806 (2016). https://doi.org/10.1021/acs.jpcc.6b02098

    Article  CAS  Google Scholar 

  39. M. Al-Mamun, H. Zhang, P. Liu, Y. Wang, J. Cao, and H. Zhao, RSC Adv. 4, 21277 (2014). https://doi.org/10.1039/C4RA00583J

  40. A. Y. Solovieva, Y. V. Ioni, A. O. Baskakov, S. S. Starchikov, A. S. Avilov, I. S. Lyubutin, and S. P. Gubin, Russ. J. Inorg. Chem. 62, 711 (2017). https://doi.org/10.1134/S0036023617060225

    Article  CAS  Google Scholar 

  41. I. V. Mironov, and V. Y. Kharlamova, Russ. J. Inorg. Chem. 68, 1487 (2023).https://doi.org/10.1134/S003602362360185X

  42. I. V. Mironov, V. Y. Kharlamova, and J. Hu, Russ. J. Inorg. Chem. 68, 287 (2023)https://doi.org/10.1134/S0036023622602422

  43. P. Chen, J. Hu, M. Yin, W. Bai, X. Chen, and Y. Zhang, ACS Appl. Nano Mater. 4, 5981 (2021). https://doi.org/10.1021/acsanm.1c00847

    Article  CAS  Google Scholar 

  44. K. C. Kwon, S. Choi, K. Hong, C. W. Moon, Y. S. Shim, D. H. Kim, T. Kim, W. Sohn, J. M. Jeon, C. H. Lee, K. T. Nam, S. Han, S. Y. Kim, and H. W. Jang, Energy Environ. Sci. 9, 2240 (2016). https://doi.org/10.1039/C6EE00144K

    Article  CAS  Google Scholar 

  45. R. Khawar, I. Riaz, and R. Jalil, Appl. Nanosci. 12, 17 (2022). https://doi.org/10.1007/s13204-021-02161-3

    Article  ADS  CAS  Google Scholar 

  46. L. Yuwen, F. Xu, B. Xue, Z. Luo, Q. Zhang, B. Bao, S. Su, L. Weng, W. Huang, and L. Wang, Nanoscale 6, 5762 (2014). https://doi.org/10.1039/C3NR06084E

    Article  ADS  PubMed  CAS  Google Scholar 

  47. N. Singh, G. Jabbour, and U. Schwingenschlögl, Eur. Phys. J. B 85, 392 (2012). https://doi.org/10.1140/epjb/e2012-30449-7

    Article  ADS  CAS  Google Scholar 

  48. A. Bouarissa, A. Layadi, and H. Maghraoui-Meherzi, Appl. Phys. A 126, 126 (2020). https://doi.org/10.1007/s00339-020-3286-1

    Article  CAS  Google Scholar 

  49. A. Yu. Vasil’kov, A. A. Voronova, A. V. Naumkin, I. E. Butenko, and Ya. V. Zubavichus, Russ. J. Inorg. Chem. 68, 812 (2023).https://doi.org/10.1134/S0036023623600739

  50. V. V. Avdeeva, A. V. Vologzhanina, A. S. Kubasov, N. S. Akhmadullina, O. N. Shishilov, E. A. Malinina, and N. T. Kuznetsov, Inorganics 10, 99 (2022). https://doi.org/10.3390/inorganics10070099

    Article  CAS  Google Scholar 

  51. C. H. Gammons, Y. Yu, and A. E. Williams-Jones, Geochim. Cosmochim. Acta 61, 1971 (1997). https://doi.org/10.1016/S0016-7037(97)00060-4

    Article  ADS  CAS  Google Scholar 

  52. M. T. Aljarrah, A. A. M. Alboull, M. S. Alharahsheh, A. Ashraf, and A. Khandakar, Molecules 27, 8651 (2022). https://doi.org/10.3390/molecules27248651

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. W. Yuan, Y. Wu, Z. Zhang, G. Shi, W. Han, K. Li, J. Gu, C. Chen, J. Ge, W. Zhou, J. Cui, and M. Wang, Opt. Express. 30, 38613 (2022). https://doi.org/10.1364/OE.474108

    Article  ADS  PubMed  CAS  Google Scholar 

  54. A. Shiohara, Y. Wang, and L. M. Liz-Marzán, J. Photochem. Photobiol. C: Photochem. Rev. 21, 2 (2014). https://doi.org/10.1016/j.jphotochemrev.2014.09.001

    Article  CAS  Google Scholar 

  55. W. Yuan, Z. Zhang, Y. Wu, G. Shi, and S. Xu, AIP Adv. 12, 105101 (2022). https://doi.org/10.1063/5.0101873

    Article  ADS  CAS  Google Scholar 

Download references

Funding

This research is funded by Vietnam National University, Ho Chi Minh City (VNU-HCM) under Grant no. C2020-18-05.

Author information

Authors and Affiliations

Authors

Contributions

Le Vu Tuan Hung contributed to conceptualization and supervision; Van Nguyen Tran performed investigation; Kieu Loan Phan Thi was involved in writing original draft preparation, writing review and editing, and visualization.

Corresponding author

Correspondence to K. L. P. Thi.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thi, K.L., Tran, V.N. & Hung, L.V. Size and Density Control of Au Nanoparticles Decorated on MoS2 Thin Films for Preparing High-Performance SERS Substrates. Russ. J. Inorg. Chem. 68, 1980–1992 (2023). https://doi.org/10.1134/S0036023623602581

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023623602581

Keywords:

Navigation